These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8938242)

  • 41. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.
    Kempe S; Metz H; Pereira PG; Mäder K
    Eur J Pharm Biopharm; 2010 Jan; 74(1):102-8. PubMed ID: 19545625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres.
    Shi L; Caulfield MJ; Chern RT; Wilson RA; Sanyal G; Volkin DB
    J Pharm Sci; 2002 Apr; 91(4):1019-35. PubMed ID: 11948541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins.
    Eliaz RE; Kost J
    J Biomed Mater Res; 2000 Jun; 50(3):388-96. PubMed ID: 10737881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol.
    Lavelle EC; Yeh MK; Coombes AG; Davis SS
    Vaccine; 1999 Feb; 17(6):512-29. PubMed ID: 10075157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein release kinetics of a biodegradable implant for fracture non-unions.
    Agrawal CM; Best J; Heckman JD; Boyan BD
    Biomaterials; 1995 Nov; 16(16):1255-60. PubMed ID: 8589196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study of the biodegradation and in vivo biocompatibility of novel biomaterials.
    Fulzele SV; Satturwar PM; Dorle AK
    Eur J Pharm Sci; 2003 Sep; 20(1):53-61. PubMed ID: 13678793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Why degradable polymers undergo surface erosion or bulk erosion.
    von Burkersroda F; Schedl L; Göpferich A
    Biomaterials; 2002 Nov; 23(21):4221-31. PubMed ID: 12194525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable injectable implant systems for long term drug delivery using poly (lactic-co-glycolic) acid copolymers.
    Chandrashekar G; Udupa N
    J Pharm Pharmacol; 1996 Jul; 48(7):669-74. PubMed ID: 8866326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
    Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T
    J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocompatibility of poly (DL-lactide-co-glycolide) microspheres implanted into the brain.
    Emerich DF; Tracy MA; Ward KL; Figueiredo M; Qian R; Henschel C; Bartus RT
    Cell Transplant; 1999; 8(1):47-58. PubMed ID: 10338275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solvent-free protein encapsulation within biodegradable polymer foams.
    Hile DD; Pishko MV
    Drug Deliv; 2004; 11(5):287-93. PubMed ID: 15742553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and characterization of cationic PLGA nanospheres as DNA carriers.
    Ravi Kumar MN; Bakowsky U; Lehr CM
    Biomaterials; 2004 May; 25(10):1771-7. PubMed ID: 14738840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perivascular graft heparin delivery using biodegradable polymer wraps.
    Edelman ER; Nathan A; Katada M; Gates J; Karnovsky MJ
    Biomaterials; 2000 Nov; 21(22):2279-86. PubMed ID: 11026634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro drug release behavior of D,L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method.
    Niwa T; Takeuchi H; Hino T; Kunou N; Kawashima Y
    J Pharm Sci; 1994 May; 83(5):727-32. PubMed ID: 8071830
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size.
    Shiga K; Muramatsu N; Kondo T
    J Pharm Pharmacol; 1996 Sep; 48(9):891-5. PubMed ID: 8910847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.
    Duque L; Körber M; Bodmeier R
    Int J Pharm; 2018 Mar; 538(1-2):139-146. PubMed ID: 29355654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids.
    Agrawal CM; Kennedy ME; Micallef DM
    J Biomed Mater Res; 1994 Aug; 28(8):851-9. PubMed ID: 7983083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Particle size studies for subcutaneous delivery of poly(lactide-co-glycolide) microspheres containing ovalbumin as vaccine formulation.
    Uchida T; Goto S; Foster TP
    J Pharm Pharmacol; 1995 Jul; 47(7):556-60. PubMed ID: 8568620
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scleral plug of biodegradable polymers for controlled drug release in the vitreous.
    Hashizoe M; Ogura Y; Kimura H; Moritera T; Honda Y; Kyo M; Hyon SH; Ikada Y
    Arch Ophthalmol; 1994 Oct; 112(10):1380-4. PubMed ID: 7945044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.