These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 893830)

  • 1. Metabolism of [14C]hydroprene (ethyl 3,7,11-trimethyl-2,4-dodecadienoate) by microsomal oxidases and esterases from three species of diptera.
    Yu SJ; Terriere LC
    J Agric Food Chem; 1977; 25(5):1076-80. PubMed ID: 893830
    [No Abstract]   [Full Text] [Related]  

  • 2. Methoprene and hydroprene are metabolized by ester cleavage in isolated hepatocytes.
    Morello A; Repetto Y; Agosin M
    Drug Metab Dispos; 1980; 8(5):309-12. PubMed ID: 6107227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental degradation of the insect growth regulator methoprene (isopropyl (2E,4E)-11-Methoxy-3,7,11-trimethyl-2,4-dodecadienoate). I. Metabolism by alfalfa and rice.
    Quistad GB; Staiger LE; Schooley DA
    J Agric Food Chem; 1974; 22(4):582-9. PubMed ID: 4841427
    [No Abstract]   [Full Text] [Related]  

  • 4. The substrate specificity of juvenile hormone esterase from Manduca sexta haemolymph.
    Weirich G; Wren J
    Life Sci; 1973 Aug; 13(3):213-26. PubMed ID: 4750918
    [No Abstract]   [Full Text] [Related]  

  • 5. Insect juvenile hormone activity of the stereoisomers of ethyl 3,7,11-trimethyl-2,4-dodecadienoate.
    Henrick CA; Willy WE; Garcia BA; Staal GB
    J Agric Food Chem; 1975; 23(3):396-400. PubMed ID: 1150983
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of ecdysterone on ethyl trimethyl dodecadienoate juvenile hormone action in Oncopeltus fasciatus.
    Bryan MD; Brown TM; Monroe RE
    J Insect Physiol; 1974 Jun; 20(6):1057-61. PubMed ID: 4839342
    [No Abstract]   [Full Text] [Related]  

  • 7. Approaches to the synthesis of the insect juvenile hormone analog ethyl 3,7,11-trimethyl-2,4-dodecadienoate and its photochemistry.
    Hendrick CA; Willy WE; McKean DR; Baggiolini E; Siddall JB
    J Org Chem; 1975 Jan; 40(1):8-14. PubMed ID: 1133601
    [No Abstract]   [Full Text] [Related]  

  • 8. NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach Blaberus giganteus L.
    Hammock BD
    Life Sci; 1975 Aug; 17(3):323-8. PubMed ID: 1160503
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for biochemically different types of vesicles in the hepatic microsomal fraction.
    Imai Y; Ito A; Sato R
    J Biochem; 1966 Oct; 60(4):417-28. PubMed ID: 4291137
    [No Abstract]   [Full Text] [Related]  

  • 10. Esterase and oxidase activity of house fly microsomes against juvenile hormone analogues containing branched chain ester groups and its induction by phenobarbital.
    Yu SJ; Terriere LC
    J Agric Food Chem; 1977; 25(6):1333-6. PubMed ID: 915132
    [No Abstract]   [Full Text] [Related]  

  • 11. Juvenile hormone-specific esterases in the haemolymph of the tobacco hornworm, Manduca sexta.
    Sanburg LL; Kramer KJ; Kézdy FJ; Law JH
    J Insect Physiol; 1975 Apr; 21(4):873-87. PubMed ID: 1127251
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of juvenile hormone esterases and carrier proteins in insect development.
    Sanburg LL; Kramer KJ; Kezdy FJ; Law JH; Oberlander H
    Nature; 1975 Jan; 253(5489):266-7. PubMed ID: 1113843
    [No Abstract]   [Full Text] [Related]  

  • 13. [Studies on microsomal enzyme activities (coumarin hydroxylation, NADP-oxidation, glucose-6-phosphatase and esterase) and cytochrome content (P-450 and b5) in normal, scorbutic and starved guinea pigs].
    Degkwitz E; Luft D; Pfeiffer U; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1968 Apr; 349(4):465-71. PubMed ID: 4385906
    [No Abstract]   [Full Text] [Related]  

  • 14. Biochemistry of proteins that bind and metabolize juvenile hormones.
    Prestwich GD; Wojtasek H; Lentz AJ; Rabinovich JM
    Arch Insect Biochem Physiol; 1996; 32(3-4):407-19. PubMed ID: 8756303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia.
    Yang Y; Wu Y; Chen S; Devine GJ; Denholm I; Jewess P; Moores GD
    Insect Biochem Mol Biol; 2004 Aug; 34(8):763-73. PubMed ID: 15262281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some properties of hemolymph esterases from Leptinotarsa decemlineata Say.
    Kramer SJ; de Kort CA
    Life Sci; 1976 Jul; 19(2):211-8. PubMed ID: 957866
    [No Abstract]   [Full Text] [Related]  

  • 17. [2,3-trans-Hexenoyl-CoA-reductase and 2,3-trans-decenoyl-CoA-reductase as components of microsomal, malonyl-CoA-dependent or mitochondrial acetyl CoA dependent chain prolongation of fatty acids].
    Podack ER; Seubert W
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1557. PubMed ID: 4649820
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparative study of palmitoyl-CoA synthetase activity in rat-liver, heart and gut mitochondrial and microsomal preparations.
    de Jong JW; Hülsmann WC
    Biochim Biophys Acta; 1970 Mar; 197(2):127-35. PubMed ID: 4313519
    [No Abstract]   [Full Text] [Related]  

  • 19. Enviromental degradation of the insect growth regulator methoprene (isopropyl (2E, 4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate). II. Metabolism by aquatic microorganisms.
    Schooley DA; Bergot BJ; Dunham LL; Siddall JB
    J Agric Food Chem; 1975; 23(2):293-8. PubMed ID: 237030
    [No Abstract]   [Full Text] [Related]  

  • 20. Fate of methoprene (isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate) in rats.
    Hawkins DR; Weston KT; Chasseaud LF; Franklin ER
    J Agric Food Chem; 1977; 25(2):398-403. PubMed ID: 838981
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.