These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8938709)

  • 1. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.
    Durell SR; Guy HR
    Neuropharmacology; 1996; 35(7):761-73. PubMed ID: 8938709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of scorpion toxin binding to voltage-gated K+ channels.
    Lipkind GM; Fozzard HA
    J Membr Biol; 1997 Aug; 158(3):187-96. PubMed ID: 9263881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A marine snail neurotoxin shares with scorpion toxins a convergent mechanism of blockade on the pore of voltage-gated K channels.
    García E; Scanlon M; Naranjo D
    J Gen Physiol; 1999 Jul; 114(1):141-57. PubMed ID: 10398697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of voltage-gated potassium channel pore.
    Zhao SR; Chen KX; Wang W; Gu JD; Hu ZJ; Ji RY
    Zhongguo Yao Li Xue Bao; 1997 Jul; 18(4):323-30. PubMed ID: 10072914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A symmetry-driven search for electrostatic interaction partners in charybdotoxin and a voltage-gated K+ channel.
    Naini AA; Miller C
    Biochemistry; 1996 May; 35(20):6181-7. PubMed ID: 8639558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore.
    Lipkind GM; Fozzard HA
    Biochemistry; 2000 Jul; 39(28):8161-70. PubMed ID: 10889022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic scale structure and functional models of voltage-gated potassium channels.
    Durell SR; Guy HR
    Biophys J; 1992 Apr; 62(1):238-47; discussion 247-50. PubMed ID: 1600096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.
    Eriksson MA; Roux B
    Biophys J; 2002 Nov; 83(5):2595-609. PubMed ID: 12414693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins.
    Aiyar J; Withka JM; Rizzi JP; Singleton DH; Andrews GC; Lin W; Boyd J; Hanson DC; Simon M; Dethlefs B
    Neuron; 1995 Nov; 15(5):1169-81. PubMed ID: 7576659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor.
    Hidalgo P; MacKinnon R
    Science; 1995 Apr; 268(5208):307-10. PubMed ID: 7716527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of outer vestibule dynamics and current magnitude in the Kv2.1 potassium channel.
    Andalib P; Wood MJ; Korn SJ
    J Gen Physiol; 2002 Nov; 120(5):739-55. PubMed ID: 12407083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural implications of fluorescence quenching in the Shaker K+ channel.
    Cha A; Bezanilla F
    J Gen Physiol; 1998 Oct; 112(4):391-408. PubMed ID: 9758859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of voltage-gated K+ channel pharmacology.
    Pongs O
    Trends Pharmacol Sci; 1992 Sep; 13(9):359-65. PubMed ID: 1382336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor sites for open channel blockers of Shaker voltage-gated potassium channels--molecular approaches.
    Pongs O
    J Recept Res; 1993; 13(1-4):503-12. PubMed ID: 7680721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.