These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 893888)

  • 1. Nuclear magnetic resonance studies of p-fluorocinnamate--alpha-chymotrypsin complexes.
    Gerig JT; Halley BA; Ortiz CE
    J Am Chem Soc; 1977 Sep; 99(19):6219-26. PubMed ID: 893888
    [No Abstract]   [Full Text] [Related]  

  • 2. Proton chemical shifts in fluorocinnamate-chymotrypsin complexes.
    Gerig JT; Halley BA
    Arch Biochem Biophys; 1984 Aug; 232(2):467-76. PubMed ID: 6087727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance studies of the interaction of trans-cnnamate with alpha-chymotrypsin.
    Gerig JT; Reinheimer JD
    J Am Chem Soc; 1970 May; 92(10):3146-50. PubMed ID: 5446954
    [No Abstract]   [Full Text] [Related]  

  • 4. Proton and fluorine nuclear magnetic resonance spectroscopic observation of hemiacetal formation between N-acyl-p-fluorophenylalaninals and alpha-chymotrypsin.
    Gorenstein DG; Shah DO
    Biochemistry; 1982 Sep; 21(19):4679-86. PubMed ID: 7138821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the interaction of 4-bromomercuriocinnamic acid with alpha-chymotrypsin by 79 Br and 81Br pulsed nuclear-magnetic resonance.
    Garnett MW; Halstead TK; Hoare DG
    Eur J Biochem; 1976 Jun; 66(1):85-93. PubMed ID: 954747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-inhibitor interactions studies via fluorine nuclear magnetic resonance. I. The interaction of alpha-chymotrypsin with DL-N-trifluoroacetylphenylalanie.
    Zeffren E; Reavill RE
    Biochem Biophys Res Commun; 1968 Jul; 32(1):73-80. PubMed ID: 5672545
    [No Abstract]   [Full Text] [Related]  

  • 7. NMR evidence against covalent attachment of an aldehyde 'transition-state' analogue to alpha-chymotrypsin.
    Gorenstein DG; Kar D; Momii RK
    Biochem Biophys Res Commun; 1976 Nov; 73(1):105-11. PubMed ID: 999692
    [No Abstract]   [Full Text] [Related]  

  • 8. Fluorine magnetic resonance studies of fluorine-substituted benzoyl chymotrypsins.
    Amshey JW; Bender ML
    Arch Biochem Biophys; 1983 Jul; 224(1):378-81. PubMed ID: 6870262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance studies of the interaction of N-trifluoroacetyltryptophanate with -chymotrypsin.
    Gerig JT; Rimerman RA
    J Am Chem Soc; 1972 Oct; 94(21):7558-64. PubMed ID: 5072869
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzyme-inhibitor interactions studied via fluorine magnetic resonance. II. Model for the trifluoroacetylphenylalanine-alpha-chymotrypsin interaction.
    Zeffren E
    Arch Biochem Biophys; 1970 Mar; 137(1):291-3. PubMed ID: 5435065
    [No Abstract]   [Full Text] [Related]  

  • 11. Alpha-chymotrypsin: effects of bicyclic substrate geometry and hydrophobicity on reactivity.
    Matta MS; Rohde MF
    Arch Biochem Biophys; 1973 Nov; 159(1):550-4. PubMed ID: 4784474
    [No Abstract]   [Full Text] [Related]  

  • 12. Enzyme--substrate interaction by nuclear magnetic resonance.
    Spotswood T; Evans JM; Richards JH
    J Am Chem Soc; 1967 Sep; 89(19):5052-4. PubMed ID: 6074810
    [No Abstract]   [Full Text] [Related]  

  • 13. Motion at the active site of [(4-fluorophenyl)sulfonyl]chymotrypsin.
    Ando ME; Gerig JT; Luk KF
    Biochemistry; 1986 Aug; 25(17):4772-8. PubMed ID: 3768312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An application of transient nuclear magnetic resonance methods to the measurement of biological exchange rates. The interaction of trifluoroacetyl-D-phenylalanine with the chymotrypsins.
    Sykes BD
    J Am Chem Soc; 1969 Feb; 91(4):949-55. PubMed ID: 5778277
    [No Abstract]   [Full Text] [Related]  

  • 15. Magnetic resonance studies of protein-small molecule interactions. Binding of N-trifluoroacetyl-D-(and L-)-p-fluorophenylalanine to -chymotrypsin.
    Gammon KL; Smallcombe SH; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4573-80. PubMed ID: 5036166
    [No Abstract]   [Full Text] [Related]  

  • 16. Reactions of alpha-chymotrypsin with 4-(trifluoromethyl)-alpha-bromoacetanilide.
    Ando ME; Gerig JT
    Biochemistry; 1982 May; 21(10):2299-304. PubMed ID: 7093189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The photofragmentation and photoaffinity labeling of phenacyl and naphthacyl alpha-chymotrypsins.
    Glover GI; Mariano PS; Wilkinson TJ; Hildreth RA; Lowe TW
    Arch Biochem Biophys; 1974 May; 162(1):73-82. PubMed ID: 4857534
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. INTRODUCTION OF MERCURY INTO THE ACTIVE SITE OF CHYMOTRYPSIN P-CHLOROMERCURIBENZENESULFONYL-CHYMOTRYPSIN.
    RIZOK D; KALLOS J
    Biochem Biophys Res Commun; 1965 Feb; 18():478-81. PubMed ID: 14301447
    [No Abstract]   [Full Text] [Related]  

  • 20. Nuclear magnetic resonance studies of sulfur compounds. I. The preparation of alpha-(alkysulfinyl)cinnamic acid derivatives and their nuclear magnetic resonance spectra.
    Nishio M; Ito T
    Chem Pharm Bull (Tokyo); 1965 Dec; 13(12):1392-8. PubMed ID: 5866236
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.