BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8939007)

  • 21. Trypanosoma cruzi: In vitro effect of aspirin with nifurtimox and benznidazole.
    López-Muñoz R; Faúndez M; Klein S; Escanilla S; Torres G; Lee-Liu D; Ferreira J; Kemmerling U; Orellana M; Morello A; Ferreira A; Maya JD
    Exp Parasitol; 2010 Feb; 124(2):167-71. PubMed ID: 19735656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro susceptibility to benznidazole, nifurtimox and posaconazole of Trypanosoma cruzi isolates from Paraguay.
    Acosta N; Yaluff G; López E; Bobadilla C; Ramírez A; Fernández I; Escobar P
    Biomedica; 2020 Dec; 40(4):749-763. PubMed ID: 33275352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of nitroheterocyclic drugs on macromolecule synthesis and degradation in Trypanosoma cruzi.
    Goijman SG; Stoppani AO
    Biochem Pharmacol; 1985 Apr; 34(8):1331-6. PubMed ID: 2581582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of trypanocidal drugs on protein biosynthesis in vitro and in vivo by Trypanosoma cruzi.
    Gonzalez NS; Cazzulo JJ
    Biochem Pharmacol; 1989 Sep; 38(17):2873-7. PubMed ID: 2673249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro.
    Neal RA; van Bueren J
    Trans R Soc Trop Med Hyg; 1988; 82(5):709-14. PubMed ID: 3075357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages.
    Carnieri EG; Moreno SN; Docampo R
    Mol Biochem Parasitol; 1993 Sep; 61(1):79-86. PubMed ID: 8259135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Buthionine sulfoximine has anti-Trypanosoma cruzi activity in a murine model of acute Chagas' disease and enhances the efficacy of nifurtimox.
    Faúndez M; López-Muñoz R; Torres G; Morello A; Ferreira J; Kemmerling U; Orellana M; Maya JD
    Antimicrob Agents Chemother; 2008 May; 52(5):1837-9. PubMed ID: 18332173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited.
    Arias DG; Marquez VE; Chiribao ML; Gadelha FR; Robello C; Iglesias AA; Guerrero SA
    Free Radic Biol Med; 2013 Oct; 63():65-77. PubMed ID: 23665397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting trypanothione metabolism in trypanosomatid human parasites.
    Olin-Sandoval V; Moreno-Sánchez R; Saavedra E
    Curr Drug Targets; 2010 Dec; 11(12):1614-30. PubMed ID: 20735352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entamoeba histolytica lacks trypanothione metabolism.
    Ariyanayagam MR; Fairlamb AH
    Mol Biochem Parasitol; 1999 Sep; 103(1):61-9. PubMed ID: 10514081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole.
    Luna KP; Hernández IP; Rueda CM; Zorro MM; Croft SL; Escobar P
    Biomedica; 2009 Sep; 29(3):448-55. PubMed ID: 20436996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy.
    Marretto JP; Andrade SG
    Rev Soc Bras Med Trop; 1994; 27(4):209-15. PubMed ID: 7855362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Damage of Trypanosoma cruzi deoxyribonucleic acid by nitroheterocyclic drugs.
    Goijman SG; Frasch AC; Stoppani AO
    Biochem Pharmacol; 1985 May; 34(9):1457-61. PubMed ID: 3888226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes.
    Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL
    Elife; 2020 Jan; 9():. PubMed ID: 32003744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trypanocidal activity of 4 isopropyl salicylaldehyde and 4-isopropyl salicylic acid on Trypanosoma cruzi.
    Nogueda-Torres B; Rodríguez-Paez L; Ramírez IB; Ramírez CW
    Rev Latinoam Microbiol; 2001; 43(1):1-6. PubMed ID: 17061565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies.
    Talevi A; Carrillo C; Comini M
    Curr Med Chem; 2019; 26(36):6614-6635. PubMed ID: 30259812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Introduction of changes in the DNA of Trypanosoma cruzi by trypanocidal agents].
    Goijman SG; Frasch AC; Stoppani AO
    Rev Argent Microbiol; 1984; 16(2):75-86. PubMed ID: 6400724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.