These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 8939751)
1. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Dixon MM; Huang S; Matthews RG; Ludwig M Structure; 1996 Nov; 4(11):1263-75. PubMed ID: 8939751 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme. Jarrett JT; Hoover DM; Ludwig ML; Matthews RG Biochemistry; 1998 Sep; 37(36):12649-58. PubMed ID: 9730838 [TBL] [Abstract][Full Text] [Related]
3. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. Jarrett JT; Huang S; Matthews RG Biochemistry; 1998 Apr; 37(16):5372-82. PubMed ID: 9548919 [TBL] [Abstract][Full Text] [Related]
4. Assignment of enzymatic function to specific protein regions of cobalamin-dependent methionine synthase from Escherichia coli. Drummond JT; Huang S; Blumenthal RM; Matthews RG Biochemistry; 1993 Sep; 32(36):9290-5. PubMed ID: 8369297 [TBL] [Abstract][Full Text] [Related]
5. Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269. Huang S; Romanchuk G; Pattridge K; Lesley SA; Wilson IA; Matthews RG; Ludwig M Protein Sci; 2007 Aug; 16(8):1588-95. PubMed ID: 17656578 [TBL] [Abstract][Full Text] [Related]
6. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group. Drummond JT; Matthews RG Biochemistry; 1994 Mar; 33(12):3742-50. PubMed ID: 8142374 [TBL] [Abstract][Full Text] [Related]
7. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Goulding CW; Postigo D; Matthews RG Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956 [TBL] [Abstract][Full Text] [Related]
8. Water-Mediated Carbon-Oxygen Hydrogen Bonding Facilitates S-Adenosylmethionine Recognition in the Reactivation Domain of Cobalamin-Dependent Methionine Synthase. Fick RJ; Clay MC; Vander Lee L; Scheiner S; Al-Hashimi H; Trievel RC Biochemistry; 2018 Jul; 57(26):3733-3740. PubMed ID: 29733595 [TBL] [Abstract][Full Text] [Related]
9. Interaction of flavodoxin with cobalamin-dependent methionine synthase. Hall DA; Jordan-Starck TC; Loo RO; Ludwig ML; Matthews RG Biochemistry; 2000 Sep; 39(35):10711-9. PubMed ID: 10978155 [TBL] [Abstract][Full Text] [Related]
10. Domain alternation switches B(12)-dependent methionine synthase to the activation conformation. Bandarian V; Pattridge KA; Lennon BW; Huddler DP; Matthews RG; Ludwig ML Nat Struct Biol; 2002 Jan; 9(1):53-6. PubMed ID: 11731805 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic study of the cobalamin-dependent methionine synthase in the activation conformation: effects of the Y1139 residue and S-adenosylmethionine on the B12 cofactor. Liptak MD; Datta S; Matthews RG; Brunold TC J Am Chem Soc; 2008 Dec; 130(48):16374-81. PubMed ID: 19006389 [TBL] [Abstract][Full Text] [Related]
12. Protein interactions in the human methionine synthase-methionine synthase reductase complex and implications for the mechanism of enzyme reactivation. Wolthers KR; Scrutton NS Biochemistry; 2007 Jun; 46(23):6696-709. PubMed ID: 17477549 [TBL] [Abstract][Full Text] [Related]
13. Insights into the reactivation of cobalamin-dependent methionine synthase. Koutmos M; Datta S; Pattridge KA; Smith JL; Matthews RG Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18527-32. PubMed ID: 19846791 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor. Hoover DM; Jarrett JT; Sands RH; Dunham WR; Ludwig ML; Matthews RG Biochemistry; 1997 Jan; 36(1):127-38. PubMed ID: 8993326 [TBL] [Abstract][Full Text] [Related]
16. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor. Datta S; Koutmos M; Pattridge KA; Ludwig ML; Matthews RG Proc Natl Acad Sci U S A; 2008 Mar; 105(11):4115-20. PubMed ID: 18332423 [TBL] [Abstract][Full Text] [Related]
17. Probing the role of the histidine 759 ligand in cobalamin-dependent methionine synthase. Liptak MD; Fleischhacker AS; Matthews RG; Brunold TC Biochemistry; 2007 Jul; 46(27):8024-35. PubMed ID: 17567043 [TBL] [Abstract][Full Text] [Related]
18. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase. Bandarian V; Matthews RG Biochemistry; 2001 Apr; 40(16):5056-64. PubMed ID: 11305922 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Banerjee RV; Harder SR; Ragsdale SW; Matthews RG Biochemistry; 1990 Feb; 29(5):1129-35. PubMed ID: 2157485 [TBL] [Abstract][Full Text] [Related]
20. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase. Jarrett JT; Choi CY; Matthews RG Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]