These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8939814)
1. Characterization of primary lesions caused by the plastome mutator of Oenothera. Chang TL; Stoike LL; Zarka D; Schewe G; Chiu WL; Jarrell DC; Sears BB Curr Genet; 1996 Dec; 30(6):522-30. PubMed ID: 8939814 [TBL] [Abstract][Full Text] [Related]
2. Proliferation of direct repeats near the Oenothera chloroplast DNA origin of replication. Sears BB; Stoike LL; Chiu WL Mol Biol Evol; 1996 Jul; 13(6):850-63. PubMed ID: 8754220 [TBL] [Abstract][Full Text] [Related]
3. Plastome mutator-induced alterations arise in Oenothera chloroplast DNA through template slippage. Stoike LL; Sears BB Genetics; 1998 May; 149(1):347-53. PubMed ID: 9584108 [TBL] [Abstract][Full Text] [Related]
4. The Oenothera plastome mutator: effect of UV irradiation and nitroso-methyl urea on mutation frequencies. Sears BB; Sokalski MB Mol Gen Genet; 1991 Oct; 229(2):245-52. PubMed ID: 1921974 [TBL] [Abstract][Full Text] [Related]
5. Chloroplast mutations induced by 9-aminoacridine hydrochloride are independent of the plastome mutator in Oenothera. GuhaMajumdar M; Baldwin S; Sears BB Theor Appl Genet; 2004 Feb; 108(3):543-9. PubMed ID: 14513223 [TBL] [Abstract][Full Text] [Related]
6. Deletions/insertions, short inverted repeats, sequences resembling att-lambda, and frame shift mutated open reading frames are involved in chloroplast DNA differences in the genus Oenothera subsection Munzia. vom Stein J; Hachtel W Mol Gen Genet; 1988 Aug; 213(2-3):513-8. PubMed ID: 3185513 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous Chloroplast Mutants Mostly Occur by Replication Slippage and Show a Biased Pattern in the Plastome of Oenothera. Massouh A; Schubert J; Yaneva-Roder L; Ulbricht-Jones ES; Zupok A; Johnson MT; Wright SI; Pellizzer T; Sobanski J; Bock R; Greiner S Plant Cell; 2016 Apr; 28(4):911-29. PubMed ID: 27053421 [TBL] [Abstract][Full Text] [Related]
8. In-frame length mutations associated with short tandem repeats are located in unassigned open reading frames of Oenothera chloroplast DNA. Nimzyk R; Schöndorf T; Hachtel W Curr Genet; 1993 Mar; 23(3):265-70. PubMed ID: 8435856 [TBL] [Abstract][Full Text] [Related]
9. Evidence for replication slippage in the evolution of Oenothera chloroplast DNA. Wolfson R; Higgins KG; Sears BB Mol Biol Evol; 1991 Sep; 8(5):709-20. PubMed ID: 1766366 [TBL] [Abstract][Full Text] [Related]
10. Detection of point mutations in chloroplast genes of Antirrhinum majus L. I. Identification of a point mutation in the psaB gene of a photosystem I plastome mutant. Schaffner C; Laasch H; Hagemann R Mol Gen Genet; 1995 Dec; 249(5):533-44. PubMed ID: 8544819 [TBL] [Abstract][Full Text] [Related]
11. Electron microscopic localization of replication origins in Oenothera chloroplast DNA. Chiu WL; Sears BB Mol Gen Genet; 1992 Mar; 232(1):33-9. PubMed ID: 1552900 [TBL] [Abstract][Full Text] [Related]
12. Variation in copy number of a 24-base pair tandem repeat in the chloroplast DNA of Oenothera hookeri strain Johansen. Blasko K; Kaplan SA; Higgins KG; Wolfson R; Sears BB Curr Genet; 1988 Sep; 14(3):287-92. PubMed ID: 3197136 [TBL] [Abstract][Full Text] [Related]
13. Chloroplast DNA differences in the genus Oenothera subsection Munzia: a short direct repeat resembling the lambda chromosomal attachment site occurs as a deletion/insertion within an intron of an NADH-dehydrogenase gene. vom Stein J; Hachtel W Curr Genet; 1988 Feb; 13(2):191-7. PubMed ID: 2836087 [TBL] [Abstract][Full Text] [Related]
14. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco. Malinova I; Zupok A; Massouh A; Schöttler MA; Meyer EH; Yaneva-Roder L; Szymanski W; Rößner M; Ruf S; Bock R; Greiner S Plant Cell; 2021 Jul; 33(5):1682-1705. PubMed ID: 33561268 [TBL] [Abstract][Full Text] [Related]
15. Detection of point mutations in the chloroplast genome by single-stranded conformation polymorphism analysis. To KY; Liu CI; Liu ST; Chang YS Plant J; 1993 Jan; 3(1):183-6. PubMed ID: 8401604 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29. Barionovi D; Giorgi S; Stoeger AR; Ruppitsch W; Scortichini M J Appl Microbiol; 2006 May; 100(5):1084-94. PubMed ID: 16630009 [TBL] [Abstract][Full Text] [Related]
18. Analysis of mutation/rearrangement frequencies and methylation patterns at a given DNA locus using restriction fragment length polymorphism. Boyko A; Kovalchuk I Methods Mol Biol; 2010; 631():49-62. PubMed ID: 20204868 [TBL] [Abstract][Full Text] [Related]
19. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Johnson EM; Schnabelrauch LS; Sears BB Mol Gen Genet; 1991 Jan; 225(1):106-12. PubMed ID: 2000083 [TBL] [Abstract][Full Text] [Related]
20. Structure and expression of cytochrome f in an Oenothera plastome mutant. Johnson EM; Sears BB Curr Genet; 1990 Jun; 17(6):529-34. PubMed ID: 2390787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]