These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8939899)
1. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. Klein M; Weissenböck G; Dufaud A; Gaillard C; Kreuz K; Martinoia E J Biol Chem; 1996 Nov; 271(47):29666-71. PubMed ID: 8939899 [TBL] [Abstract][Full Text] [Related]
2. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175 [TBL] [Abstract][Full Text] [Related]
3. Directly energized uptake of beta-estradiol 17-(beta-D-glucuronide) in plant vacuoles is strongly stimulated by glutathione conjugates. Klein M; Martinoia E; Weissenböck G J Biol Chem; 1998 Jan; 273(1):262-70. PubMed ID: 9417074 [TBL] [Abstract][Full Text] [Related]
4. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Marinova K; Kleinschmidt K; Weissenböck G; Klein M Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433 [TBL] [Abstract][Full Text] [Related]
5. The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific. Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G Phytochemistry; 2001 Jan; 56(2):153-9. PubMed ID: 11219807 [TBL] [Abstract][Full Text] [Related]
6. Direct energization of bile acid transport into plant vacuoles. Hörtensteiner S; Vogt E; Hagenbuch B; Meier PJ; Amrhein N; Martinoia E J Biol Chem; 1993 Sep; 268(25):18446-9. PubMed ID: 8360146 [TBL] [Abstract][Full Text] [Related]
7. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Bartholomew DM; Van Dyk DE; Lau SM; O'Keefe DP; Rea PA; Viitanen PV Plant Physiol; 2002 Nov; 130(3):1562-72. PubMed ID: 12428021 [TBL] [Abstract][Full Text] [Related]
8. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G Plant J; 2000 Feb; 21(3):289-304. PubMed ID: 10758480 [TBL] [Abstract][Full Text] [Related]
9. A herbicide antidote (safener) induces the activity of both the herbicide detoxifying enzyme and of a vacuolar transporter for the detoxified herbicide. Gaillard C; Dufaud A; Tommasini R; Kreuz K; Amrhein N; Martinoia E FEBS Lett; 1994 Sep; 352(2):219-21. PubMed ID: 7925976 [TBL] [Abstract][Full Text] [Related]
10. Transport of lucifer yellow CH into plant vacuoles--evidence for direct energization of a sulphonated substance and implications for the design of new molecular probes. Klein M; Martinoia E; Weissenböck G FEBS Lett; 1997 Dec; 420(1):86-92. PubMed ID: 9450555 [TBL] [Abstract][Full Text] [Related]
11. Dipeptide transport in barley mesophyll vacuoles. Jamaï A; Gaillard C; Delrot S; Martinoia E Planta; 1995; 196(3):430-3. PubMed ID: 7647680 [TBL] [Abstract][Full Text] [Related]
12. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551 [TBL] [Abstract][Full Text] [Related]
14. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. Ohsumi Y; Anraku Y J Biol Chem; 1983 May; 258(9):5614-7. PubMed ID: 6343390 [TBL] [Abstract][Full Text] [Related]
15. The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Dean JV; Mohammed LA; Fitzpatrick T Planta; 2005 May; 221(2):287-96. PubMed ID: 15871031 [TBL] [Abstract][Full Text] [Related]
16. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+. Dietz KJ; Lang M; Schönrock M; Zink C Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282 [TBL] [Abstract][Full Text] [Related]
17. Production of Four Flavonoid Chong Y; Kim BG; Park YJ; Yang Y; Lee SW; Lee Y; Ahn JH J Agric Food Chem; 2023 Apr; 71(13):5302-5313. PubMed ID: 36952620 [TBL] [Abstract][Full Text] [Related]
18. Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don. Massonneau A; Martinoia E; Dietz KJ; Mimura T Planta; 2000 Aug; 211(3):390-5. PubMed ID: 10987558 [TBL] [Abstract][Full Text] [Related]
19. Changes in isovitexin-O-glycosylation during the development of young barley plants. Brauch D; Porzel A; Schumann E; Pillen K; Mock HP Phytochemistry; 2018 Apr; 148():11-20. PubMed ID: 29421507 [TBL] [Abstract][Full Text] [Related]
20. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Marinova K; Pourcel L; Weder B; Schwarz M; Barron D; Routaboul JM; Debeaujon I; Klein M Plant Cell; 2007 Jun; 19(6):2023-38. PubMed ID: 17601828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]