BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8940608)

  • 1. Studies on fructose metabolism in cultured astroglial cells and control hepatocytes: lack of fructokinase activity and immunoreactivity in astrocytes.
    Bergbauer K; Dringen R; Verleysdonk S; Gebhardt R; Hamprecht B; Wiesinger H
    Dev Neurosci; 1996; 18(5-6):371-9. PubMed ID: 8940608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain.
    Dringen R; Hamprecht B
    Glia; 1993 Jul; 8(3):143-9. PubMed ID: 8225556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogen in astrocytes: possible function as lactate supply for neighboring cells.
    Dringen R; Gebhardt R; Hamprecht B
    Brain Res; 1993 Oct; 623(2):208-14. PubMed ID: 8221102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathways for glucose in astrocytes.
    Wiesinger H; Hamprecht B; Dringen R
    Glia; 1997 Sep; 21(1):22-34. PubMed ID: 9298844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells.
    Dringen R; Schmoll D; Cesar M; Hamprecht B
    Biol Chem Hoppe Seyler; 1993 May; 374(5):343-7. PubMed ID: 8338635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of mannose by astroglial cells.
    Dringen R; Bergbauer K; Wiesinger H; Hamprecht B
    Neurochem Res; 1994 Jan; 19(1):23-30. PubMed ID: 8139758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione restoration as indicator for cellular metabolism of astroglial cells.
    Dringen R; Hamprecht B
    Dev Neurosci; 1998; 20(4-5):401-7. PubMed ID: 9778578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a fructokinase mutant of Rhizobium meliloti.
    Gardiol A; Arias A; Cerveñansky C; Gaggero C; Martínez-Drets G
    J Bacteriol; 1980 Oct; 144(1):12-6. PubMed ID: 6252186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of liver fructokinase in the metabolism of D-xylulose and xylitol in isolated rat hepatocytes.
    Barngrover DA; Dills WL
    J Nutr; 1983 Mar; 113(3):522-30. PubMed ID: 6298387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by 2-deoxyglucose and 1,5-gluconolactone of glycogen mobilization in astroglia-rich primary cultures.
    Dringen R; Hamprecht B
    J Neurochem; 1993 Apr; 60(4):1498-504. PubMed ID: 8455036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorbitol pathway activity and utilization of polyols in astroglia-rich primary cultures.
    Wiesinger H; Thiess U; Hamprecht B
    Glia; 1990; 3(4):277-82. PubMed ID: 2144507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of D-[1-(13)C]fructose, D-[2-(13)C]fructose, and D-[6-(13)C]fructose in rat hepatocytes incubated in the presence of H(2)O or D(2)O.
    Malaisse WJ; Ladrière L; Verbruggen I; Willem R
    Mol Genet Metab; 2002 Feb; 75(2):162-7. PubMed ID: 11855935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of glucose into glycogen in primary cultures of rat hepatocytes.
    Parniak M; Kalant N
    Can J Biochem Cell Biol; 1985 May; 63(5):333-40. PubMed ID: 3893656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes.
    Forsyth RJ; Bartlett K; Eyre J
    Neurochem Int; 1996 Mar; 28(3):243-50. PubMed ID: 8813241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose and fructose have sugar-specific effects in both liver and skeletal muscle in vivo: a role for liver fructokinase.
    Fernández-Novell JM; Ramió-Lluch L; Orozco A; Gómez-Foix AM; Guinovart JJ; Rodríguez-Gil JE
    PLoS One; 2014; 9(10):e109726. PubMed ID: 25330076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
    Lanaspa MA; Ishimoto T; Cicerchi C; Tamura Y; Roncal-Jimenez CA; Chen W; Tanabe K; Andres-Hernando A; Orlicky DJ; Finol E; Inaba S; Li N; Rivard CJ; Kosugi T; Sanchez-Lozada LG; Petrash JM; Sautin YY; Ejaz AA; Kitagawa W; Garcia GE; Bonthron DT; Asipu A; Diggle CP; Rodriguez-Iturbe B; Nakagawa T; Johnson RJ
    J Am Soc Nephrol; 2014 Nov; 25(11):2526-38. PubMed ID: 24876114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of glucose to sorbitol and fructose by liver-derived cells in culture.
    Levine GA; Bissell MJ; Bissell DM
    J Biol Chem; 1978 Sep; 253(17):5985-9. PubMed ID: 210165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic intralobular mapping of fructose metabolism in the rat liver.
    Burns SP; Murphy HC; Iles RA; Bailey RA; Cohen RD
    Biochem J; 2000 Jul; 349(Pt 2):539-45. PubMed ID: 10880353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of guanosine triphosphate depletion in the liver after a fructose load. The role of fructokinase.
    Phillips MI; Davies DR
    Biochem J; 1985 Jun; 228(3):667-71. PubMed ID: 2992452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes related to fructose utilization in Pseudomonas cepacia.
    Allenza P; Lee YN; Lessie TG
    J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.