These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 8940628)

  • 21. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition.
    Melikian HE; Ramamoorthy S; Tate CG; Blakely RD
    Mol Pharmacol; 1996 Aug; 50(2):266-76. PubMed ID: 8700133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of insulin-like growth factor binding protein-4 expression in the developing and adult rat brain: analysis by in situ hybridization.
    Brar AK; Chernausek SD
    J Neurosci Res; 1993 May; 35(1):103-14. PubMed ID: 7685395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes.
    Ndika JD; Lusink V; Beaubrun C; Kanhai W; Martinez-Munoz C; Jakobs C; Salomons GS
    Gene; 2014 Jan; 533(2):488-93. PubMed ID: 24144841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cloning and functional expression of the mouse dopamine transporter.
    Brüss M; Wieland A; Bönisch H
    J Neural Transm (Vienna); 1999; 106(7-8):657-62. PubMed ID: 10907725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of a skate retinal GABA transporter cDNA.
    Qian X; Malchow RP; O'Brien J; al-Ubaidi MR
    Mol Vis; 1998 Mar; 4():6. PubMed ID: 9538116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and expression of an A1 adenosine receptor from rat brain.
    Mahan LC; McVittie LD; Smyk-Randall EM; Nakata H; Monsma FJ; Gerfen CR; Sibley DR
    Mol Pharmacol; 1991 Jul; 40(1):1-7. PubMed ID: 1857334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter.
    Dodd JR; Zheng T; Christie DL
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):128-36. PubMed ID: 10572933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology.
    Bian X; Zhu J; Jia X; Liang W; Yu S; Li Z; Zhang W; Rao Y
    Elife; 2023 Dec; 12():. PubMed ID: 38126335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creatine and pyruvate prevent the alterations caused by tyrosine on parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex of Wistar rats.
    de Andrade RB; Gemelli T; Rojas DB; Bonorino NF; Costa BM; Funchal C; Dutra-Filho CS; Wannmacher CM
    Mol Neurobiol; 2015; 51(3):1184-94. PubMed ID: 24961569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-linked creatine transporter deficiency: clinical aspects and pathophysiology.
    van de Kamp JM; Mancini GM; Salomons GS
    J Inherit Metab Dis; 2014 Sep; 37(5):715-33. PubMed ID: 24789340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism.
    Carducci C; Carducci C; Santagata S; Adriano E; Artiola C; Thellung S; Gatta E; Robello M; Florio T; Antonozzi I; Leuzzi V; Balestrino M
    BMC Neurosci; 2012 Apr; 13():41. PubMed ID: 22536786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats.
    Andrade VS; Rojas DB; Oliveira L; Nunes ML; de Castro FL; Garcia C; Gemelli T; de Andrade RB; Wannmacher CM
    Mol Cell Biochem; 2012 Mar; 362(1-2):225-32. PubMed ID: 22081291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders.
    Tachikawa M; Hosoya K
    Fluids Barriers CNS; 2011 Feb; 8(1):13. PubMed ID: 21352605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review.
    Braissant O; Henry H
    J Inherit Metab Dis; 2008 Apr; 31(2):230-9. PubMed ID: 18392746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of N-linked glycosylation on the creatine transporter.
    Straumann N; Wind A; Leuenberger T; Wallimann T
    Biochem J; 2006 Jan; 393(Pt 2):459-69. PubMed ID: 16167890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1.
    Braissant O; Henry H; Villard AM; Speer O; Wallimann T; Bachmann C
    BMC Dev Biol; 2005 May; 5():9. PubMed ID: 15918910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creatine transporters: a reappraisal.
    Speer O; Neukomm LJ; Murphy RM; Zanolla E; Schlattner U; Henry H; Snow RJ; Wallimann T
    Mol Cell Biochem; 2004; 256-257(1-2):407-24. PubMed ID: 14977199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacokinetics of the dietary supplement creatine.
    Persky AM; Brazeau GA; Hochhaus G
    Clin Pharmacokinet; 2003; 42(6):557-74. PubMed ID: 12793840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human, rat and chicken small intestinal Na+ - Cl- -creatine transporter: functional, molecular characterization and localization.
    Peral MJ; García-Delgado M; Calonge ML; Durán JM; De La Horra MC; Wallimann T; Speer O; Ilundáin A
    J Physiol; 2002 Nov; 545(1):133-44. PubMed ID: 12433955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creatine and the creatine transporter: a review.
    Snow RJ; Murphy RM
    Mol Cell Biochem; 2001 Aug; 224(1-2):169-81. PubMed ID: 11693194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.