BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8941513)

  • 1. Cytochrome c mRNA in skeletal muscles of immobilized limbs.
    Booth FW; Lou W; Hamilton MT; Yan Z
    J Appl Physiol (1985); 1996 Nov; 81(5):1941-5. PubMed ID: 8941513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of synthesis of fibrillar collagens in rat skeletal muscle during immobilization in shortened and lengthened positions.
    Ahtikoski AM; Koskinen SO; Virtanen P; Kovanen V; Takala TE
    Acta Physiol Scand; 2001 Jun; 172(2):131-40. PubMed ID: 11442453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome c promoter activity in soleus and white vastus lateralis muscles in rats.
    Yan Z; Booth FW
    J Appl Physiol (1985); 1998 Sep; 85(3):973-8. PubMed ID: 9729572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased contractile activity decreases RNA-protein interaction in the 3'-UTR of cytochrome c mRNA.
    Yan Z; Salmons S; Dang YI; Hamilton MT; Booth FW
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1157-66. PubMed ID: 8897821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive stretch inhibits central corelike lesion formation in the soleus muscles of hindlimb-suspended unloaded rats.
    Baewer DV; Hoffman M; Romatowski JG; Bain JL; Fitts RH; Riley DA
    J Appl Physiol (1985); 2004 Sep; 97(3):930-4. PubMed ID: 15133001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome c protein synthesis rate in rat skeletal muscle.
    Booth FW
    J Appl Physiol (1985); 1991 Oct; 71(4):1225-30. PubMed ID: 1661720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic and genetic adaptation of soleus muscle mitochondria to physical training in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Nakai N; Sugiyama S; Ozawa T; Sokabe M; Horai S; Tokuyama K; Suzuki M
    Am J Physiol; 1994 Sep; 267(3 Pt 1):E388-95. PubMed ID: 7943219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c protein-synthesis rates and mRNA contents during atrophy and recovery in skeletal muscle.
    Morrison PR; Montgomery JA; Wong TS; Booth FW
    Biochem J; 1987 Jan; 241(1):257-63. PubMed ID: 3032156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle.
    Caiozzo VJ; Haddad F; Baker MJ; Herrick RE; Prietto N; Baldwin KM
    J Appl Physiol (1985); 1996 Jul; 81(1):123-32. PubMed ID: 8828654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA levels for alpha-subunit of prolyl 4-hydroxylase and fibrillar collagens in immobilized rat skeletal muscle.
    Han XY; Wang W; Myllylä R; Virtanen P; Karpakka J; Takala TE
    J Appl Physiol (1985); 1999 Jul; 87(1):90-6. PubMed ID: 10409561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of limb immobilization on skeletal muscle.
    Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1113-8. PubMed ID: 7047468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptotic changes in a full-lengthened immobilization model of rat soleus muscle.
    Suh HR; Park EH; Moon SW; Kim JW; Cho HY; Han HC
    Muscle Nerve; 2019 Feb; 59(2):263-269. PubMed ID: 30338859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of muscle gene expression to changes in contractile activity.
    Booth FW; Babij P; Thomason DB; Wong TS; Morrison PR
    Adv Myochem; 1987; 1():205-16. PubMed ID: 11539096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positions.
    Ahtikoski AM; Koskinen SO; Virtanen P; Kovanen V; Risteli J; Takala TE
    Acta Physiol Scand; 2003 Apr; 177(4):473-81. PubMed ID: 12648165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentially expressed genes and morphological changes during lengthened immobilization in rat soleus muscle.
    Kim JW; Kwon OY; Kim MH
    Differentiation; 2007 Feb; 75(2):147-57. PubMed ID: 17316384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of muscle length on muscle atrophy in the mouse tibialis anterior and soleus muscles.
    Fujita N; Fujimoto T; Tasaki H; Arakawa T; Matsubara T; Miki A
    Biomed Res; 2009 Feb; 30(1):39-45. PubMed ID: 19265262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis.
    Bergeron R; Ren JM; Cadman KS; Moore IK; Perret P; Pypaert M; Young LH; Semenkovich CF; Shulman GI
    Am J Physiol Endocrinol Metab; 2001 Dec; 281(6):E1340-6. PubMed ID: 11701451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle.
    Babij P; Booth FW
    Am J Physiol; 1988 May; 254(5 Pt 1):C651-6. PubMed ID: 2834956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative alterations in intramuscular connective tissue following immobilization: an experimental study in the rat calf muscles.
    Jozsa L; Thöring J; Järvinen M; Kannus P; Lehto M; Kvist M
    Exp Mol Pathol; 1988 Oct; 49(2):267-78. PubMed ID: 3169207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome c mRNA and alpha-actin mRNA in muscles of rats fed beta-GPA.
    Lai MM; Booth FW
    J Appl Physiol (1985); 1990 Sep; 69(3):843-8. PubMed ID: 2174029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.