These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 8941658)

  • 21. Nuclear magnetic resonance and biochemical measurements of glucose utilization in the cone-dominant ground squirrel retina.
    Winkler BS; Starnes CA; Twardy BS; Brault D; Taylor RC
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4613-9. PubMed ID: 18566456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Na+-K+-ATPase in insulin-induced lactate release by skeletal muscle.
    Novel-Chaté V; Rey V; Chioléro R; Schneiter P; Leverve X; Jéquier E; Tappy L
    Am J Physiol Endocrinol Metab; 2001 Feb; 280(2):E296-300. PubMed ID: 11158933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for the sodium, potassium adenosine triphosphatase (Na+,K+ ATPase) enzyme in degranulation of rat basophilic leukaemia cells.
    Gentile DA; Skoner DP
    Clin Exp Allergy; 1996 Dec; 26(12):1449-60. PubMed ID: 9027446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct effect of contraction and ion transport on NADH fluorescence and lactate production in uterine smooth muscle.
    Rubányi G; Tóth A; Kovách AG
    Acta Physiol Acad Sci Hung; 1982; 59(1):45-58. PubMed ID: 7180510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of monensin on cation influx and glycolysis of Eimeria tenella sporozoites in vitro.
    Smith CK; Galloway RB
    J Parasitol; 1983 Aug; 69(4):666-70. PubMed ID: 6631635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship of muscle growth in vitro to sodium pump activity and transmembrane potential.
    Vandenburgh HH; Lent CM
    J Cell Physiol; 1984 Jun; 119(3):283-95. PubMed ID: 6327731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of sodium in thyroid hormone uptake by rat skeletal muscle.
    Centanni M; Robbins J
    J Clin Invest; 1987 Oct; 80(4):1068-72. PubMed ID: 2821072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic response to anisoosmolarity of rat skeletal muscle in vitro.
    Brunmair B; Neschen S; Gras F; Roden M; Nowotny P; Waldhäusl W; Fürnsinn C
    Horm Metab Res; 2000 Jul; 32(7):251-5. PubMed ID: 10965928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis.
    Chin ER; Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1375-86. PubMed ID: 9534949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased flow rate and papaverine increase K+ exchange in perfused rat hind-limb skeletal muscle.
    Lindinger MI; Hawke TJ
    Can J Physiol Pharmacol; 1999 Jul; 77(7):536-43. PubMed ID: 10535714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na+ channel and Na+-K+ ATPase involvement in norepinephrine- and veratridine-stimulated metabolism in perfused rat hind limb.
    Tong AC; Di Maria CA; Rattigan S; Clark MG
    Can J Physiol Pharmacol; 1999 May; 77(5):350-7. PubMed ID: 10535684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist.
    Pedersen TH; Clausen T; Nielsen OB
    J Physiol; 2003 Aug; 551(Pt 1):277-86. PubMed ID: 12813152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy metabolism of reticulocytes: two different sources of energy for Na+K(+)-ATPase activity.
    Kostić MM; Zivković RV
    Cell Biochem Funct; 1994 Jun; 12(2):107-12. PubMed ID: 8044886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increase of the cytotoxic effect of Bothrops jararacussu venom on mouse extensor digitorum longus and soleus by potassium channel blockers and by Na(+)/K(+)-ATPase inhibition.
    Tomaz MA; Fernandes FF; El-Kik CZ; Moraes RA; Calil-Elias S; Saturnino-Oliveira J; Martinez AM; Ownby CL; Melo PA
    Toxicon; 2008 Sep; 52(4):551-8. PubMed ID: 18675839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactate induces insulin resistance in skeletal muscle by suppressing glycolysis and impairing insulin signaling.
    Choi CS; Kim YB; Lee FN; Zabolotny JM; Kahn BB; Youn JH
    Am J Physiol Endocrinol Metab; 2002 Aug; 283(2):E233-40. PubMed ID: 12110527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Quantitative model of human erythrocyte glycolysis. Relationship between erythrocyte energy metabolism and Na+, K+-ATPase activity].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI
    Biofizika; 1979; 24(3):489-94. PubMed ID: 223657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrative, in situ approach to examining K+ flux in resting skeletal muscle.
    Lindinger MI; Hawke TJ; Vickery L; Bradford L; Lipskie SL
    Can J Physiol Pharmacol; 2001 Dec; 79(12):996-1006. PubMed ID: 11824943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis.
    McCarter FD; Nierman SR; James JH; Wang L; King JK; Friend LA; Fischer JE
    Life Sci; 2002 Mar; 70(16):1875-88. PubMed ID: 12005173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.