BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 8941705)

  • 1. NAD+ analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase.
    Oei SL; Griesenbeck J; Buchlow G; Jorcke D; Mayer-Kuckuk P; Wons T; Ziegler M
    FEBS Lett; 1996 Nov; 397(1):17-21. PubMed ID: 8941705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interaction of the human poly(ADP-ribosyl)transferase depends on the functional state of the enzyme.
    Griesenbeck J; Oei SL; Mayer-Kuckuk P; Ziegler M; Buchlow G; Schweiger M
    Biochemistry; 1997 Jun; 36(24):7297-304. PubMed ID: 9200678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME; Pederick RL; Bailey VC; Potter BV
    Biochemistry; 1999 Jul; 38(28):9105-14. PubMed ID: 10413485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase.
    Ziegler M; Jorcke D; Schweiger M
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):401-5. PubMed ID: 9291111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity.
    Desmarais Y; Ménard L; Lagueux J; Poirier GG
    Biochim Biophys Acta; 1991 Jun; 1078(2):179-86. PubMed ID: 1648406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeoxyNAD and deoxyADP-ribosylation of proteins.
    Alvarez-Gonzalez R
    Mol Cell Biochem; 1994 Sep; 138(1-2):213-9. PubMed ID: 7898466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase.
    Mendoza-Alvarez H; Alvarez-Gonzalez R
    Biochemistry; 1999 Mar; 38(13):3948-53. PubMed ID: 10194306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-ribosylation of highly purified rat brain mitochondria.
    Masmoudi A; Islam F; Mandel P
    J Neurochem; 1988 Jul; 51(1):188-93. PubMed ID: 2837535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of poly(ADP-ribosyl) histone synthesis by poly(ADP-ribose) synthetase.
    Kawaichi M; Ueda K; Hayaishi O
    J Biol Chem; 1980 Feb; 255(3):816-9. PubMed ID: 6243297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some electron microscopic aspects of poly(ADPR) polymerase-DNA interactions and of auto-poly(ADP-ribosyl)ation reaction.
    Mandel P; Jongstra-Bilen J; Ittel ME; de Murcia G; Delain E; Niedergang C; Vosberg HP
    Princess Takamatsu Symp; 1983; 13():71-81. PubMed ID: 6317642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction of poly(ADP-ribose) with the 20S proteasome in vitro.
    Mayer-Kuckuk P; Ullrich O; Ziegler M; Grune T; Schweiger M
    Biochem Biophys Res Commun; 1999 Jun; 259(3):576-81. PubMed ID: 10364460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3'-Deoxy-NAD+ as a substrate for poly(ADP-ribose)polymerase and the reaction mechanism of poly(ADP-ribose) elongation.
    Alvarez-Gonzalez R
    J Biol Chem; 1988 Nov; 263(33):17690-6. PubMed ID: 3141424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the active site of ADP-ribosyl cyclase.
    Munshi C; Thiel DJ; Mathews II; Aarhus R; Walseth TF; Lee HC
    J Biol Chem; 1999 Oct; 274(43):30770-7. PubMed ID: 10521467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1-N6-Etheno-ADP-ribosylation of elongation factor-2 by diphtheria toxin.
    Giovane A; Balestrieri C; Quagliuolo L; Servillo L
    FEBS Lett; 1985 Oct; 191(2):191-4. PubMed ID: 2996930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Clickable NAD
    Zhang L; Lin H
    Methods Mol Biol; 2017; 1608():95-109. PubMed ID: 28695506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of poly(ADP-ribose) synthetase and ADP-ribosyl histone splitting enzyme.
    Kawaichi M; Oka J; Zhang J; Ueda K; Hayaishi O
    Princess Takamatsu Symp; 1983; 13():121-8. PubMed ID: 6317633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribose) synthesis and degradation in mammalian nuclei.
    Boulikas T
    Anal Biochem; 1992 Jun; 203(2):252-8. PubMed ID: 1329575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis.
    Ruf A; Rolli V; de Murcia G; Schulz GE
    J Mol Biol; 1998 Apr; 278(1):57-65. PubMed ID: 9571033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.