These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 894176)
1. The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. Steel CG; Lees AD J Exp Biol; 1977 Apr; 67():117-35. PubMed ID: 894176 [TBL] [Abstract][Full Text] [Related]
2. The neurosecretory system in the aphid Megoura viciae, with reference to unusual features associated with long distance transport of neurosecretion. Steel CG Gen Comp Endocrinol; 1977 Mar; 31(3):307-22. PubMed ID: 67062 [No Abstract] [Full Text] [Related]
3. Some functions of identified neurosecretory cells in the brain of the aphid, Megoura viciae. Steel CG Gen Comp Endocrinol; 1978 Feb; 34(2):219-28. PubMed ID: 631542 [No Abstract] [Full Text] [Related]
4. Progress in the characterization of insulin-like peptides in aphids: Immunohistochemical mapping of ILP4. Cuti P; Barberà M; Veenstra JA; Martínez-Torres D Insect Biochem Mol Biol; 2021 Sep; 136():103623. PubMed ID: 34246764 [TBL] [Abstract][Full Text] [Related]
5. The effect of temperature on the photoperiodic 'clock' and 'counter' of a Scottish clone of the vetch aphid, Megoura viciae. Vaz Nunes M ; Hardie J J Insect Physiol; 2000 May; 46(5):727-733. PubMed ID: 10742521 [TBL] [Abstract][Full Text] [Related]
6. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. Barberà M; Cañas-Cañas R; Martínez-Torres D Insect Biochem Mol Biol; 2019 Sep; 112():103185. PubMed ID: 31291597 [TBL] [Abstract][Full Text] [Related]
7. The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. Gao N; von Schantz M; Foster RG; Hardie J J Insect Physiol; 1999 Nov; 45(11):1011-1019. PubMed ID: 12770276 [TBL] [Abstract][Full Text] [Related]
8. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Barberà M; Collantes-Alegre JM; Martínez-Torres D Insect Biochem Mol Biol; 2017 Apr; 83():54-67. PubMed ID: 28235563 [TBL] [Abstract][Full Text] [Related]
9. THE LOCATION OF THE PHOTOPERIODIC RECEPTORS IN THE APHID MEGOURA VICIAE BUCKTON. LEES AD J Exp Biol; 1964 Mar; 41():119-33. PubMed ID: 14161603 [No Abstract] [Full Text] [Related]
10. Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. Gadenne C; Groh C; Grübel K; Joschinski J; Krauss J; Krieger J; Rössler W; Anton S Arthropod Struct Dev; 2019 Sep; 52():100883. PubMed ID: 31568972 [TBL] [Abstract][Full Text] [Related]
11. Allatostatin-like and AKH/HrTH-like peptides in the aphid Megoura viciae. Tilley SB; Weaver RJ; Isaac RE Gen Comp Endocrinol; 2000 Mar; 117(3):355-65. PubMed ID: 10764547 [TBL] [Abstract][Full Text] [Related]
12. Photoperiod-dependent neural control of the activity of the neurosecretory canopy cell in the lateral lobes of the cerebral ganglia of the freshwater pulmonate Lymnaea stagnalis (L.). van Minnen J; Reichelt D Cell Tissue Res; 1980; 208(3):457-65. PubMed ID: 7397763 [TBL] [Abstract][Full Text] [Related]
13. The influence of natural enemies on wing induction in Aphis fabae and Megoura viciae (Hemiptera: Aphididae). Kunert G; Schmoock-Ortlepp K; Reissmann U; Creutzburg S; Weisser WW Bull Entomol Res; 2008 Feb; 98(1):59-62. PubMed ID: 18076776 [TBL] [Abstract][Full Text] [Related]
14. Reproductive strategy of winged and wingless morphs of the aphids Sitobion avenae and Metopolophium dirhodum. Wratten SD Ann Appl Biol; 1977 Apr; 85(3):319-31. PubMed ID: 848782 [TBL] [Abstract][Full Text] [Related]
15. Corpus allatum activity and wing determination in Megoura viciae. Leckstein PM; Llewellyn M Nature; 1975 Dec; 258(5537):714-5. PubMed ID: 1207750 [No Abstract] [Full Text] [Related]
16. Photoperiodic modulation of circadian rhythms in the cricket Gryllus bimaculatus. Koga M; Ushirogawa H; Tomioka K J Insect Physiol; 2005 Jun; 51(6):681-90. PubMed ID: 15993131 [TBL] [Abstract][Full Text] [Related]
17. Photoperiodic control of neurosecretory cells in the brain of the Egyptian grasshopper, Anacridium aegyptium L. Geldiay S Gen Comp Endocrinol; 1970 Feb; 14(1):35-42. PubMed ID: 5435515 [No Abstract] [Full Text] [Related]
18. Differential regulations of wing and ovarian development and heterochronic changes of embryogenesis between morphs in wing polyphenism of the vetch aphid. Ishikawa A; Miura T Evol Dev; 2009; 11(6):680-8. PubMed ID: 19878289 [TBL] [Abstract][Full Text] [Related]
19. Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella. Kobelková A; Závodská R; Sauman I; Bazalová O; Dolezel D J Biol Rhythms; 2015 Apr; 30(2):104-16. PubMed ID: 25637625 [TBL] [Abstract][Full Text] [Related]
20. Cyclical parthenogenetic reproduction in the Russian wheat aphid (Hemiptera: Aphididae) in the United States: sexual reproduction and its outcome on biotypic diversity. Puterka GJ; Hammon RW; Burd JD; Peairs FB; Randolph TL; Cooper WR J Econ Entomol; 2012 Jun; 105(3):1057-68. PubMed ID: 22812148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]