These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8941775)

  • 1. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH on the glucose and lactate metabolisms by the washed cells of Actinomyces naeslundii under anaerobic and aerobic conditions.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1999 Feb; 14(1):60-5. PubMed ID: 10204482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of acetate on sorbitol fermentation by oral lactobacilli.
    Takahashi N; Kalfas S; Yamada T
    Oral Microbiol Immunol; 1995 Dec; 10(6):349-54. PubMed ID: 8602342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii.
    van der Hoeven JS; van den Kieboom CW
    Oral Microbiol Immunol; 1990 Aug; 5(4):223-5. PubMed ID: 2082247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the succinate pathway in sorbitol fermentation by oral Actinomyces viscosus and Actinomyces naeslundii.
    Takahashi N; Kalfas S; Yamada T
    Oral Microbiol Immunol; 1994 Aug; 9(4):218-23. PubMed ID: 7478761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.
    Guo T; Zhang L; Xin Y; Xu Z; He H; Kong J
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842545
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.
    Takahashi N; Kalfas S; Yamada T
    J Bacteriol; 1995 Oct; 177(20):5806-11. PubMed ID: 7592327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate oxidation by Treponema pallidum.
    Barbieri JT; Cox CD
    Infect Immun; 1979 Jul; 25(1):157-63. PubMed ID: 383612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate and acetate production in Listeria innocua.
    Kelly AF; Patchett RA
    Lett Appl Microbiol; 1996 Aug; 23(2):125-8. PubMed ID: 8987454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum.
    Zhu Y; Yang ST
    J Biotechnol; 2004 May; 110(2):143-57. PubMed ID: 15121334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans.
    Kim JN; Ahn SJ; Burne RA
    Appl Environ Microbiol; 2015 Aug; 81(15):5015-25. PubMed ID: 25979891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus.
    Kalfas S; Takahashi N; Yamada T
    Oral Microbiol Immunol; 1994 Dec; 9(6):372-5. PubMed ID: 7870473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen dependent lactate utilization by Lactobacillus plantarum.
    Murphy MG; O'Connor L; Walsh D; Condon S
    Arch Microbiol; 1985 Feb; 141(1):75-9. PubMed ID: 3994484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate dehydrogenases in cyanobacteria.
    Sanchez JJ; Palleroni NJ; Doudoroff M
    Arch Microbiol; 1975 Jun; 104(1):57-65. PubMed ID: 168830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena.
    Jasso-Chávez R; Moreno-Sánchez R
    Eur J Biochem; 2003 Dec; 270(24):4942-51. PubMed ID: 14653820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.
    Marshall DD; Sadykov MR; Thomas VC; Bayles KW; Powers R
    J Proteome Res; 2016 Apr; 15(4):1205-12. PubMed ID: 26975873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii.
    Buchanan BB; Pine L
    J Gen Microbiol; 1967 Feb; 46(2):225-36. PubMed ID: 6029732
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.