These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 894178)
1. Asymmetrical permeability of the integument of tree frogs (Hylidae). Yorio T; Bentley PJ J Exp Biol; 1977 Apr; 67():197-204. PubMed ID: 894178 [TBL] [Abstract][Full Text] [Related]
2. The permeability of the skin of the aquatic anuran Xenopus laevis (Pipidae). Yorio T; Bentley PJ J Exp Biol; 1978 Feb; 72():285-9. PubMed ID: 624899 [TBL] [Abstract][Full Text] [Related]
3. The permeability of the skin of a neotenous urodele amphibian, the mudpuppy Necturus maculosus. Bentley PJ; Yorio T J Physiol; 1977 Feb; 265(2):537-47. PubMed ID: 850206 [TBL] [Abstract][Full Text] [Related]
4. The passive permeability of the skin of anuran amphibia: a comparison of frogs (Rana pipiens) and toads (Bufo marinus). Bentley PJ; Yorio T J Physiol; 1976 Oct; 261(3):603-15. PubMed ID: 824445 [TBL] [Abstract][Full Text] [Related]
5. Effects of ethanol on the permeability of frog skin. Yorio T; Bentley PJ J Pharmacol Exp Ther; 1976 May; 197(2):340-51. PubMed ID: 1083905 [TBL] [Abstract][Full Text] [Related]
6. [Influence of aldosterone on sodium transport and transepithelial water flux through isolated ventral skin of Rana temporaria]. Eigler J Pflugers Arch; 1970; 317(3):236-51. PubMed ID: 5462683 [No Abstract] [Full Text] [Related]
7. Permeability of urinary bladder of Rana cancrivora to urea in the presence of oxytocin. Chew MM; Elliott AB; Wong HY J Physiol; 1972 Jun; 223(3):757-72. PubMed ID: 5045740 [TBL] [Abstract][Full Text] [Related]
8. Sodium and water movement across the urinary bladder of a urodele amphibian (th mudpuppy Necturus maculosus): studies and vasotocin and aldosterone. Bentley PJ Gen Comp Endocrinol; 1971 Apr; 16(2):356-62. PubMed ID: 4323880 [No Abstract] [Full Text] [Related]
9. Active sodium uptake by the skin of foetal sheep and pigs. France VM J Physiol; 1976 Jun; 258(2):377-92. PubMed ID: 957162 [TBL] [Abstract][Full Text] [Related]
10. Active transport of sodium and chloride by the isolated skin of the South American frog Leptodactylus ocelatus. ZADUNAISKY JA; CANDIA OA Nature; 1962 Sep; 195():1004. PubMed ID: 14009543 [No Abstract] [Full Text] [Related]
11. Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta). Nielsen R J Membr Biol; 1997 Sep; 159(1):61-9. PubMed ID: 9309211 [TBL] [Abstract][Full Text] [Related]
12. Potential differences and short circuit current across the skin of Rana cancrivora, in vitro. Dicker SE; France V Comp Biochem Physiol A Comp Physiol; 1971 Mar; 38(3):687-97. PubMed ID: 4396835 [No Abstract] [Full Text] [Related]
13. Comparison of transcutaneous permeability in skins of larval and adult salamanders (Ambystoma tigrinum). Bentley PJ; Baldwin GF Am J Physiol; 1980 Nov; 239(5):R505-8. PubMed ID: 7435664 [TBL] [Abstract][Full Text] [Related]
14. Body wiping behaviors associated with cutaneous lipids in hylid tree frogs of Florida. Barbeau TR; Lillywhite HB J Exp Biol; 2005 Jun; 208(Pt 11):2147-56. PubMed ID: 15914658 [TBL] [Abstract][Full Text] [Related]
15. Nervous control of the permeability characteristics of the isolated skin of the toad Bufo bufo L. Salée ML; Vidrequin-Deliège M Comp Biochem Physiol; 1967 Nov; 23(2):583-97. PubMed ID: 6080514 [No Abstract] [Full Text] [Related]
16. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway. Mandel LJ; Curran PF J Gen Physiol; 1972 May; 59(5):503-18. PubMed ID: 4537305 [TBL] [Abstract][Full Text] [Related]
17. Antidiuretic hormone action in A6 cells: effect on apical Cl and Na conductances and synergism with aldosterone for NaCl reabsorption. Verrey F J Membr Biol; 1994 Feb; 138(1):65-76. PubMed ID: 8189433 [TBL] [Abstract][Full Text] [Related]
18. Correlation between aquaporin and water permeability in response to vasotocin, hydrin and {beta}-adrenergic effectors in the ventral pelvic skin of the tree frog Hyla japonica. Ogushi Y; Kitagawa D; Hasegawa T; Suzuki M; Tanaka S J Exp Biol; 2010 Jan; 213(2):288-94. PubMed ID: 20038663 [TBL] [Abstract][Full Text] [Related]
19. Capacitance, short-circuit current and osmotic water flow across different regions of the isolated toad skin. Baker CA; Hillyard SD J Comp Physiol B; 1992; 162(8):707-13. PubMed ID: 1494029 [TBL] [Abstract][Full Text] [Related]
20. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin. Takada M; Fujimaki-Aoba K; Hokari S J Comp Physiol B; 2011 Feb; 181(2):239-48. PubMed ID: 20981549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]