These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 894179)

  • 1. Ionic basis of axonal excitability in an extreme euryhaline osmoconformer, the serpulid worm Mercierella enigmatica (Fauvel).
    Carlson AD; Treherne JE
    J Exp Biol; 1977 Apr; 67():205-15. PubMed ID: 894179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). II. Effects of ionic dilution on the resting and action potentials.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():205-19. PubMed ID: 712328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal adaptation to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). III. Adaptations to hyposmotic dilution.
    Benson JA; Treherne JE
    J Exp Biol; 1978 Oct; 76():221-35. PubMed ID: 712329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal adaptations to osmotic and ionic stress in an invertebrate osmoconformer (Mercierella enigmatica Fauvel). I. Ultrastructural and electrophysiological observations on axonal accessibility.
    Skaer HL; Treherne JE; Benson JA; Moreton RB
    J Exp Biol; 1978 Oct; 76():191-204. PubMed ID: 712327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of osmotic stress on the electrical properties of the axons of a marine osmoconformer (Mala squinado. brachyura: crustacea).
    Pichon Y; Treherne JE
    J Exp Biol; 1976 Dec; 65(3):553-63. PubMed ID: 1018162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale.
    Meech RW; Mackie GO
    J Neurophysiol; 1993 Mar; 69(3):884-93. PubMed ID: 7681867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current-clamp analysis of a time-dependent rectification in rat optic nerve.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Physiol; 1990 Feb; 421():185-202. PubMed ID: 2348391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions.
    Inoue I
    J Gen Physiol; 1980 Sep; 76(3):337-54. PubMed ID: 6252279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct propagating regenerative potentials in a single ethanol-treated axon.
    Hochner B; Spira ME
    Brain Res; 1986 Nov; 398(1):164-8. PubMed ID: 3801888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon.
    Keynes RD; Rojas E
    J Physiol; 1974 Jun; 239(2):393-434. PubMed ID: 4414038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actions of the antidepressant drug imipramine on the voltage-clamped Myxicola giant axon.
    Schauf CL; Davis FA; Kesler RL
    J Pharmacol Exp Ther; 1975 May; 193(2):669-75. PubMed ID: 1142111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone.
    Gorman AL; Hermann A; Thomas MV
    J Physiol; 1982 Jun; 327():185-217. PubMed ID: 7120137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facultative blood-brain barrier and neuronal adaptation to osmotic stress in a marine osmoconformer.
    Treherne JE; Carlson AD; Skaer HL
    Nature; 1977 Feb; 265(5594):550-3. PubMed ID: 834307
    [No Abstract]   [Full Text] [Related]  

  • 15. Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone.
    Standen NB
    J Physiol; 1975 Jul; 249(2):241-52. PubMed ID: 1177092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium inward currents in internally perfused giant axons.
    Meves H; Vogel W
    J Physiol; 1973 Nov; 235(1):225-65. PubMed ID: 4778139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons.
    Tokuno HA; Kocsis JD; Waxman SG
    Muscle Nerve; 2003 Aug; 28(2):212-7. PubMed ID: 12872326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties.
    Poulter MO; Hashiguchi T; Padjen AL
    J Neurophysiol; 1993 Dec; 70(6):2301-12. PubMed ID: 7509856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of tetrodotoxin and procaine in internally perfused squid giant axons.
    Narahashi T; Anderson NC; Moore JW
    J Gen Physiol; 1967 May; 50(5):1413-28. PubMed ID: 6033593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of temperature, potassium, and sodium on the conductance change accompanying the action potential in the squid giant axon.
    AMATNIEK E; FREYGANG W; GRUNDFEST H; KIEBEL G; SHANES A
    J Gen Physiol; 1957 Nov; 41(2):333-42. PubMed ID: 13475695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.