BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8941919)

  • 1. Interactions between D-glucose and phosphate in renal proximal tubule cells.
    Brazy P; Chobanian MC
    Kidney Int Suppl; 1996 Dec; 57():S30-4. PubMed ID: 8941919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38 MAPK.
    Lee YJ; Park SH; Jeung TO; Kim KW; Lee JH; Han HJ
    J Cell Physiol; 2005 Oct; 205(1):68-76. PubMed ID: 15880445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium.
    Waqar MA; Seto J; Chung SD; Hiller-Grohol S; Taub M
    J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic requirement for inorganic phosphate by the rabbit proximal tubule.
    Brazy PC; Gullans SR; Mandel LJ; Dennis VW
    J Clin Invest; 1982 Jul; 70(1):53-62. PubMed ID: 7085888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NMR study of cellular phosphates and membrane transport in renal proximal tubules.
    Chobanian MC; Anderson ME; Brazy PC
    Am J Physiol; 1995 Mar; 268(3 Pt 2):F375-84. PubMed ID: 7900836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. A study in the isolated perfused tubules.
    Yanagawa N; Nagami GT; Kurokawa K
    Miner Electrolyte Metab; 1985; 11(1):57-61. PubMed ID: 3974539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between gluconeogenic metabolism and accumulation of phosphate by chick kidney tubule cells.
    Grahn MF; Parveen R; Butterworth PJ
    Cell Biochem Funct; 1985 Jul; 3(3):193-8. PubMed ID: 3836021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of phosphate transport in the proximal tubule by metabolic substrates.
    Gullans SR; Brazy PC; Mandel LJ; Dennis VW
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F582-7. PubMed ID: 6496686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between phosphate and oxidative metabolism in proximal renal tubules.
    Brazy PC; Mandel LJ; Gullans SR; Soltoff SP
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F575-81. PubMed ID: 6496685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: a 13C-NMR study.
    Renault S; Faiz H; Gadet R; Ferrier B; Martin G; Baverel G; Conjard-Duplany A
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):9-17. PubMed ID: 19747499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of acute phosphate depletion on isolated chick kidney tubule cells.
    Grahn MF; Butterworth PJ
    Cell Biochem Funct; 1986 Oct; 4(4):271-5. PubMed ID: 3791568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P and 13C NMR spectroscopic study of wild type and multidrug resistant Ehrlich ascites tumor cells.
    Rasmussen J; Hansen LL; Friche E; Jaroszewski JW
    Oncol Res; 1993; 5(3):119-26. PubMed ID: 8260748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular adenosine triphosphate protects oxidative stress-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression in primary cultured renal proximal tubule cells: role of PI3K and Akt signaling.
    Lee YJ; Lee JH; Han HJ
    J Cell Physiol; 2006 Dec; 209(3):802-10. PubMed ID: 16972266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of glycolysis induction in primary cultures of rabbit kidney proximal tubule cells: the role of shaking, glucose and insulin.
    Monteil C; Leclere C; Dantzer F; Elkaz V; Fillastre JP; Morin JP
    Cell Biol Int; 1993 Oct; 17(10):953-60. PubMed ID: 8287026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism and phosphate transport in proximal renal tubules.
    Brazy PC
    Am J Kidney Dis; 1989 Oct; 14(4):298-302. PubMed ID: 2801698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of glucagon receptor mRNA in the rat proximal tubule: potential role for glucagon in the control of renal glucose transport.
    Marks J; Debnam ES; Dashwood MR; Srai SK; Unwin RJ
    Clin Sci (Lond); 2003 Mar; 104(3):253-8. PubMed ID: 12605582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of steviol on para-aminohippurate transport by isolated perfused rabbit renal proximal tubule.
    Chatsudthipong V; Jutabha P
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1120-7. PubMed ID: 11504809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal tubule dysfunction in cystine-loaded tubules: effect of phosphate and metabolic substrates.
    Bajaj G; Baum M
    Am J Physiol; 1996 Sep; 271(3 Pt 2):F717-22. PubMed ID: 8853435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule.
    Gullans SR; Brazy PC; Soltoff SP; Dennis VW; Mandel LJ
    Am J Physiol; 1982 Aug; 243(2):F133-40. PubMed ID: 7114212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.