These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 894251)

  • 1. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):59-79. PubMed ID: 894251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):81-97. PubMed ID: 894252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):99-121. PubMed ID: 894253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions.
    Haas M; McManus TJ
    J Gen Physiol; 1985 May; 85(5):649-67. PubMed ID: 3998706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism.
    Kregenow FM
    J Gen Physiol; 1971 Oct; 58(4):396-412. PubMed ID: 5112658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dog red blood cells. Adjustment of salt and water content in vitro.
    Parker JC
    J Gen Physiol; 1973 Aug; 62(2):147-56. PubMed ID: 4722565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of chronic alterations of salt intake and aging on the kinetic of red cell Na+ and K+ transport in Sprague-Dawley rats.
    Zicha J; Duhm J
    Physiol Bohemoslov; 1990; 39(1):37-44. PubMed ID: 2142786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on carbon fluxes.
    Garrahan PJ; Rega AF
    J Physiol; 1972 Jun; 223(2):595-617. PubMed ID: 4339052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ions and energy metabolism in duck salt-gland: possible role of furosemide-sensitive co-transport of sodium and chloride.
    Ernst SA; van Rossum GD
    J Physiol; 1982 Apr; 325():333-52. PubMed ID: 7108780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume regulation by flounder red blood cells in anisotonic media.
    Cala PM
    J Gen Physiol; 1977 May; 69(5):537-52. PubMed ID: 864431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cetiedil on cation and water movements in erythrocytes.
    Schmidt WF; Asakura T; Schwartz E
    J Clin Invest; 1982 Mar; 69(3):589-94. PubMed ID: 7061704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo.
    Duhm J; Göbel BO
    J Membr Biol; 1984; 77(3):243-54. PubMed ID: 6699906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of ouabain and ethacrynic acid on the intracellular sodium and potassium concentrations in renal medullary slices incubated in cold potassium-free ringer solution and re-incubated at 37 degrees C in the presence of external potassium.
    Law RO
    J Physiol; 1976 Jan; 254(3):743-58. PubMed ID: 1255504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Na+ and K+ transport in red blood cells of Dahl rats. Effects of age and salt.
    Zicha J; Duhm J
    Hypertension; 1990 Jun; 15(6 Pt 1):612-27. PubMed ID: 2347624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism.
    Kregenow FM
    J Gen Physiol; 1971 Oct; 58(4):372-95. PubMed ID: 5112657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uptake and hydrolysis of p-nitrophenyl phosphate by red cells in relation to ATP hydrolysis by the sodium pump.
    Cotterrell D; Whittam R
    J Physiol; 1972 Jun; 223(3):773-802. PubMed ID: 4339904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypertonic cell volume regulation in mouse thick limbs. II. Na+-H+ and Cl(-)-HCO3- exchange in basolateral membranes.
    Hebert SC
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C920-31. PubMed ID: 3013019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.