These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 894251)

  • 21. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.
    Cotterrell D; Whittam R
    J Physiol; 1971 May; 214(3):509-36. PubMed ID: 4996368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Further studies of hormone-sensitive sodium and potassium transport in red cells from developing chick embryos.
    Shanbaky NM; Wacholtz MC; Sha'afi RI
    J Cell Physiol; 1981 May; 107(2):303-8. PubMed ID: 6265478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red cell sodium in DOCA-salt hypertension: a Brattleboro study.
    Talib HK; Zicha J
    Life Sci; 1992; 50(14):1021-30. PubMed ID: 1552821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of external sodium on ouabain-insensitive K influx in fresh human red blood cells.
    Pfliegler G; Kelemen E; Szabó B
    Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):281-8. PubMed ID: 6545635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium and potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two-kidney, one clip, and spontaneously hypertensive rats. Role of hypokalemia and cell volume.
    Duhm J; Göbel BO; Beck FX
    Hypertension; 1983; 5(5):642-52. PubMed ID: 6311735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells.
    Beauge LA; Adragna N
    J Gen Physiol; 1971 May; 57(5):576-92. PubMed ID: 5553102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cation movements in the high sodium erythrocyte of the cat.
    Sha'afi RI; Lieb WR
    J Gen Physiol; 1967 Jul; 50(6):1751-64. PubMed ID: 6034766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2.
    Wehner F; Lawonn P; Tinel H
    Pflugers Arch; 2002 Mar; 443(5-6):779-90. PubMed ID: 11889576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media.
    Kregenow FM
    J Gen Physiol; 1973 Apr; 61(4):509-27. PubMed ID: 4694744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes.
    Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV
    Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell water content in carp kidney tissue slices as influenced by various osmotic agents.
    Benes I; Janácek K; Tauchová R
    Physiol Bohemoslov; 1983; 32(4):328-33. PubMed ID: 6622558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport.
    Haas M; Schmidt WF; McManus TJ
    J Gen Physiol; 1982 Jul; 80(1):125-47. PubMed ID: 7119727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and thermodynamics of ouabain binding by intact turkey erythrocytes: effects of external sodium ion, potassium ion, and temperature.
    Furukawa H; Bilezikian JP; Loeb JN
    J Gen Physiol; 1980 Oct; 76(4):499-516. PubMed ID: 6255063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes.
    Post RL; Albright CD; Dayani K
    J Gen Physiol; 1967 May; 50(5):1201-20. PubMed ID: 6033582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cation transport and its altered regulations in human stomatocytic erythrocytes.
    Dutcher PO; Segel GB; Feig SA; Miller DR; Klemperer MR
    Pediatr Res; 1975 Dec; 9(12):924-7. PubMed ID: 1196711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of replacing medium sodium by choline, caesium, or rubidium, on water and ion contents of renal cortical slices.
    Hughes PM; Macknight AD
    J Physiol; 1977 May; 267(1):113-36. PubMed ID: 874826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Potassium transport in erythrocytes from patients with gentamicin intolerance].
    Toropova FV; Smirnov AIu; Smirnova OI; Marakhova II
    Tsitologiia; 2002; 44(12):1194-8. PubMed ID: 12683330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interrelation between membrane transport and the contents of alkali metal cations in HeLa cells.
    Ikehara T; Sakai T; Miyamoto H; Kaniike K
    Jpn J Physiol; 1982; 32(1):13-24. PubMed ID: 6281502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.