These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 894253)

  • 1. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):99-121. PubMed ID: 894253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):81-97. PubMed ID: 894252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):59-79. PubMed ID: 894251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.
    Cotterrell D; Whittam R
    J Physiol; 1971 May; 214(3):509-36. PubMed ID: 4996368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport.
    Haas M; Schmidt WF; McManus TJ
    J Gen Physiol; 1982 Jul; 80(1):125-47. PubMed ID: 7119727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [3H]bumetanide binding to duck red cells. Correlation with inhibition of (Na + K + 2Cl) co-transport.
    Haas M; Forbush B
    J Biol Chem; 1986 Jun; 261(18):8434-41. PubMed ID: 3013852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions.
    Haas M; McManus TJ
    J Gen Physiol; 1985 May; 85(5):649-67. PubMed ID: 3998706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism.
    Kregenow FM
    J Gen Physiol; 1971 Oct; 58(4):396-412. PubMed ID: 5112658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The duck red cell model of volume-sensitive chloride-dependent cation transport.
    McManus TJ; Haas M; Starke LC; Lytle CY
    Ann N Y Acad Sci; 1985; 456():183-6. PubMed ID: 2418725
    [No Abstract]   [Full Text] [Related]  

  • 10. Volume-sensitive K transport in human erythrocytes.
    Kaji D
    J Gen Physiol; 1986 Dec; 88(6):719-38. PubMed ID: 3794638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic and osmotic equilibria of human red blood cells treated with nystatin.
    Freedman JC; Hoffman JF
    J Gen Physiol; 1979 Aug; 74(2):157-85. PubMed ID: 490141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dog red blood cells. Adjustment of salt and water content in vitro.
    Parker JC
    J Gen Physiol; 1973 Aug; 62(2):147-56. PubMed ID: 4722565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes.
    Kregenow FM; Robbie DE; Orloff J
    Am J Physiol; 1976 Aug; 231(2):306-11. PubMed ID: 183515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes.
    Riddick DH; Kregenow FM; Orloff J
    J Gen Physiol; 1971 Jun; 57(6):752-66. PubMed ID: 4325171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. Volume regulation in isotonic media.
    Kregenow FM
    J Gen Physiol; 1973 Apr; 61(4):509-27. PubMed ID: 4694744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foreign anion substitution for chloride in human red blood cells: effect on ionic and osmotic equilibria.
    Payne JA; Lytle C; McManus TJ
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C819-27. PubMed ID: 2240195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors involved in the increase of K+ efflux of erythrocytes in low chloride media.
    Bernhardt I; Erdmann A; Vogel R; Glaser R
    Biomed Biochim Acta; 1987; 46(2-3):S36-40. PubMed ID: 3593314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport.
    MacLeod RJ; Hamilton JR
    Am J Physiol; 1990 May; 258(5 Pt 1):G665-74. PubMed ID: 2333994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.