BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8942637)

  • 1. Targeted base stacking disruption by the EcoRI DNA methyltransferase.
    Allan BW; Reich NO
    Biochemistry; 1996 Nov; 35(47):14757-62. PubMed ID: 8942637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual 2-aminopurine fluorescence from a complex of DNA and the EcoKI methyltransferase.
    Su TJ; Connolly BA; Darlington C; Mallin R; Dryden DT
    Nucleic Acids Res; 2004; 32(7):2223-30. PubMed ID: 15107490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA.
    Gowher H; Jeltsch A
    J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence.
    Lenz T; Bonnist EY; Pljevaljcić G; Neely RK; Dryden DT; Scheidig AJ; Jones AC; Weinhold E
    J Am Chem Soc; 2007 May; 129(19):6240-8. PubMed ID: 17455934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the absolute temporal coupling between DNA binding and base flipping.
    Allan BW; Reich NO; Beechem JM
    Biochemistry; 1999 Apr; 38(17):5308-14. PubMed ID: 10220317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog.
    Goedecke K; Pignot M; Goody RS; Scheidig AJ; Weinhold E
    Nat Struct Biol; 2001 Feb; 8(2):121-5. PubMed ID: 11175899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus.
    Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E
    Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding.
    Bonnist EY; Liebert K; Dryden DT; Jeltsch A; Jones AC
    Biophys Chem; 2012 Jan; 160(1):28-34. PubMed ID: 21962489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases.
    Holz B; Klimasauskas S; Serva S; Weinhold E
    Nucleic Acids Res; 1998 Feb; 26(4):1076-83. PubMed ID: 9461471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-wavelength fluorescence from 2-aminopurine-nucleobase dimers in DNA.
    Bonnist EY; Jones AC
    Chemphyschem; 2008 Jun; 9(8):1121-9. PubMed ID: 18446915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence study of DNA binding and bending by EcoRI DNA methyltransferase.
    Ma B; Wang J; Fang X
    J Phys Chem B; 2006 Oct; 110(39):19647-51. PubMed ID: 17004833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A selective, noncovalent assay for base flipping in DNA.
    O'Neil LL; Wiest O
    J Am Chem Soc; 2005 Dec; 127(48):16800-1. PubMed ID: 16316222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase.
    Liebert K; Hermann A; Schlickenrieder M; Jeltsch A
    J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase.
    Szegedi SS; Reich NO; Gumport RI
    Nucleic Acids Res; 2000 Oct; 28(20):3962-71. PubMed ID: 11024176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct real time observation of base flipping by the EcoRI DNA methyltransferase.
    Allan BW; Beechem JM; Lindstrom WM; Reich NO
    J Biol Chem; 1998 Jan; 273(4):2368-73. PubMed ID: 9442083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase.
    Sastry SS; Ross BM
    Biochemistry; 1996 Dec; 35(49):15715-25. PubMed ID: 8961934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B; Shieh FK; De Los Rios S; Perona JJ; Reich NO
    J Mol Biol; 2006 Sep; 362(2):334-46. PubMed ID: 16919299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues.
    Jeltsch A
    Biol Chem; 2001 Apr; 382(4):707-10. PubMed ID: 11405235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure.
    Endo M; Katsuda Y; Hidaka K; Sugiyama H
    J Am Chem Soc; 2010 Feb; 132(5):1592-7. PubMed ID: 20078043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.