BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 8942654)

  • 1. Comparative modeling of substrate binding in the S1' subsite of serine carboxypeptidases from yeast, wheat, and human.
    Elsliger MA; Pshezhetsky AV; Vinogradova MV; Svedas VK; Potier M
    Biochemistry; 1996 Nov; 35(47):14899-909. PubMed ID: 8942654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate recognition mechanism of carboxypeptidase Y.
    Nakase H; Murata S; Ueno H; Hayashi R
    Biosci Biotechnol Biochem; 2001 Nov; 65(11):2465-71. PubMed ID: 11791720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxy-monopeptidase substrate specificity of human cathepsin X.
    Devanathan G; Turnbull JL; Ziomek E; Purisima EO; Ménard R; Sulea T
    Biochem Biophys Res Commun; 2005 Apr; 329(2):445-52. PubMed ID: 15737607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of binding energy of chymostatin with human cathepsin A and its homologous proteins by molecular orbital calculation.
    Yoshida T; Lepp Z; Kadota Y; Satoh Y; Itoh K; Chuman H
    J Chem Inf Model; 2006; 46(5):2093-103. PubMed ID: 16995740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Kex1deltap, a prohormone-processing carboxypeptidase from Saccharomyces cerevisiae,
    Shilton BH; Thomas DY; Cygler M
    Biochemistry; 1997 Jul; 36(29):9002-12. PubMed ID: 9220988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsin A/protective protein: an unusual lysosomal multifunctional protein.
    Hiraiwa M
    Cell Mol Life Sci; 1999 Dec; 56(11-12):894-907. PubMed ID: 11212324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous modeling of the lysosomal protective protein/carboxypeptidase L: structural and functional implications of mutations identified in galactosialidosis patients.
    Elsliger MA; Potier M
    Proteins; 1994 Jan; 18(1):81-93. PubMed ID: 8146124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the hydrolytic properties of (serine) carboxypeptidase Y.
    Stennicke HR; Mortensen UH; Breddam K
    Biochemistry; 1996 Jun; 35(22):7131-41. PubMed ID: 8679540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrates with charged P1 residues are efficiently hydrolyzed by serine carboxypeptidases when S3-P1 interactions are facilitated.
    Olesen K; Breddam K
    Biochemistry; 1997 Oct; 36(40):12235-41. PubMed ID: 9315861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of lysine 60f to S1' specificity of thrombin.
    Rezaie AR; Olson ST
    Biochemistry; 1997 Feb; 36(5):1026-33. PubMed ID: 9033392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1.
    Welch AR; Holman CM; Huber M; Brenner MC; Browner MF; Van Wart HE
    Biochemistry; 1996 Aug; 35(31):10103-9. PubMed ID: 8756473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct affinity purification and supramolecular organization of human lysosomal cathepsin A.
    Pshezhetsky AV; Potier M
    Arch Biochem Biophys; 1994 Aug; 313(1):64-70. PubMed ID: 8053688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity.
    Hemerly JP; Oliveira V; Del Nery E; Morty RE; Andrews NW; Juliano MA; Juliano L
    Biochem J; 2003 Aug; 373(Pt 3):933-9. PubMed ID: 12737623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural principles of the broad substrate specificity of Thermoactinomyces vulgaris carboxypeptidase T--role of amino acid residues at positions 260 and 262.
    Grishin AM; Akparov VKh; Chestukhina GG
    Protein Eng Des Sel; 2008 Sep; 21(9):545-51. PubMed ID: 18515300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of mutant carboxypeptidase T from Thermoactinomyces vulgaris with an implanted S1' subsite from pancreatic carboxypeptidase B.
    Akparov VK; Timofeev VI; Kuranova IP; Rakitina TV
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):638-643. PubMed ID: 30279315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the human carboxypeptidase N (kininase I) catalytic domain.
    Keil C; Maskos K; Than M; Hoopes JT; Huber R; Tan F; Deddish PA; Erdös EG; Skidgel RA; Bode W
    J Mol Biol; 2007 Feb; 366(2):504-16. PubMed ID: 17157876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the broad substrate specificity of carboxypeptidase T from Thermoactinomyces vulgaris.
    Akparov VKh; Timofeev VI; Khaliullin IG; Švedas V; Chestukhina GG; Kuranova IP
    FEBS J; 2015 Apr; 282(7):1214-24. PubMed ID: 25619204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved glutamic acid bridge in serine carboxypeptidases, belonging to the alpha/beta hydrolase fold, acts as a pH-dependent protein-stabilizing element.
    Mortensen UH; Breddam K
    Protein Sci; 1994 May; 3(5):838-42. PubMed ID: 7914789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous spectrophotometric assay of human lysosomal cathepsin A/protective protein in normal and galactosialidosis cells.
    Pshezhetsky AV; Vinogradova MV; Elsliger MA; el-Zein F; Svedas VK; Potier M
    Anal Biochem; 1995 Sep; 230(2):303-7. PubMed ID: 7503422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.