These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 8942656)
1. Pre-steady-state kinetic study of the mechanism of inhibition of the plasma membrane Ca(2+)-ATPase by lanthanum. Herscher CJ; Rega AF Biochemistry; 1996 Nov; 35(47):14917-22. PubMed ID: 8942656 [TBL] [Abstract][Full Text] [Related]
2. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Fujimori T; Jencks WP J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527 [TBL] [Abstract][Full Text] [Related]
3. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
4. Pre-steady-state kinetic study of the effects of K+ on the partial reactions of the catalytic cycle of the plasma membrane Ca(2+)-ATPase. Herscher CJ; Rega AF; Adamo HP Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):673-7. PubMed ID: 8615846 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of the plasma membrane calcium pump at high ATP concentration. On the mechanism of ATP hydrolysis. Echarte MM; Rossi RC; Rossi JP Biochemistry; 2007 Jan; 46(4):1034-41. PubMed ID: 17240987 [TBL] [Abstract][Full Text] [Related]
6. The dephosphorylation reaction of the Ca(2+)-ATPase from plasma membranes. Herscher CJ; Rega AF; Garrahan PJ J Biol Chem; 1994 Apr; 269(14):10400-6. PubMed ID: 8144623 [TBL] [Abstract][Full Text] [Related]
7. Magnesium-ions accelerate the formation of the phosphoenzyme of the (Ca2+ + Mg2+)-activated ATPase from plasma membranes by acting on the phosphorylation reaction. Adamo HP; Rega AF; Garrahan PJ Biochem Biophys Res Commun; 1990 Jun; 169(2):700-5. PubMed ID: 2141469 [TBL] [Abstract][Full Text] [Related]
8. The reaction of Mg2+ with the Ca2+-ATPase from human red cell membranes and its modification by Ca2+. Caride AJ; Rega AF; Garrahan PJ Biochim Biophys Acta; 1986 Dec; 863(2):165-77. PubMed ID: 2947627 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change. Hanel AM; Jencks WP Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081 [TBL] [Abstract][Full Text] [Related]
10. Pre-steady-state phosphorylation of the human red cell Ca2+-ATPase. Adamo HP; Rega AF; Garrahan PJ J Biol Chem; 1988 Nov; 263(33):17548-54. PubMed ID: 2972720 [TBL] [Abstract][Full Text] [Related]
11. The E2 in equilibrium E1 transition of the Ca2(+)-ATPase from plasma membranes studied by phosphorylation. Adamo HP; Rega AF; Garrahan PJ J Biol Chem; 1990 Mar; 265(7):3789-92. PubMed ID: 2137459 [TBL] [Abstract][Full Text] [Related]
12. A novel role of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid as an activator of the phosphatase activity catalyzed by plasma membrane Ca2+-ATPase. Santos FT; Scofano HM; Barrabin H; Meyer-Fernandes JR; Mignaco JA Biochemistry; 1999 Aug; 38(32):10552-8. PubMed ID: 10441152 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Tiffert T; Lew VL Cell Calcium; 2001 Nov; 30(5):337-42. PubMed ID: 11733940 [TBL] [Abstract][Full Text] [Related]
14. The effect of di- and trivalent cations on the phosphorylation of the Ca2+-ATPase in sarcoplasmic reticulum vesicles. Domonkos J; Heiner L; Vargha M Biochim Biophys Acta; 1985 Jul; 817(1):1-6. PubMed ID: 3159428 [TBL] [Abstract][Full Text] [Related]
15. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride. Zheng HL; Zhao ZQ; Zhang CG; Feng JZ; Ke ZL; Su MJ Biometals; 2000 Jun; 13(2):157-63. PubMed ID: 11016404 [TBL] [Abstract][Full Text] [Related]
16. Intracellular calcium homeostasis in Leishmania mexicana. Identification and characterization of a plasma membrane calmodulin-dependent Ca(2+)-ATPase. Benaim G; Cervino V; Hermoso T; Felibert P; Laurentin A Biol Res; 1993; 26(1-2):141-50. PubMed ID: 7670527 [TBL] [Abstract][Full Text] [Related]
17. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition. Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986 [TBL] [Abstract][Full Text] [Related]
19. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins. Maretzki D; Klatt D; Reimann B; Rapoport S Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991 [TBL] [Abstract][Full Text] [Related]
20. Divalent cation dependent ATPase activities of red blood cell membranes: influence of the oxidation of membrane thiol groups close to each other. Scutari G; Ballestrin G; Covaz AL J Supramol Struct; 1980; 14(1):1-11. PubMed ID: 6111625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]