These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 894292)
1. Brain gamma-aminobutyric acid, glutamic acid decarboxylase, glutamate, and ammonia in mice during hyperbaric oxygenation. Faiman MD; Nolan RJ; Baxter CF; Dodd DE J Neurochem; 1977 Apr; 28(4):861-5. PubMed ID: 894292 [No Abstract] [Full Text] [Related]
2. Regional distribution of glutamate decarboxylase and gaba within the amygdaloid complex and stria terminalis system of the rat. Ben-Ari Y; Kanazawa I; Zigmond RE J Neurochem; 1976 Jun; 26(6):1279-83. PubMed ID: 932733 [No Abstract] [Full Text] [Related]
3. Studies on the regulation of GABA synthesis: the interaction of adenine nucleotides and glutamate with brain glutamate decarboxylase. Seligmann B; Miller LP; Brockman DE; Martin DL J Neurochem; 1978 Feb; 30(2):371-6. PubMed ID: 624943 [No Abstract] [Full Text] [Related]
4. A study of possible biochemical mechanisms involved in hyperbaric oxygen-induced changes in cerebral gamma-aminobutyric acid levels and accompanying seizures. Wood JD; Radomski MW; Watson WJ Can J Biochem; 1971 May; 49(5):543-7. PubMed ID: 5575652 [No Abstract] [Full Text] [Related]
5. Glutamate dehydrogenase, glutamic acid decarboxylase, and GABA amino transferase in epileptic mouse cortex. van Gelder NM Can J Physiol Pharmacol; 1974 Oct; 52(5):952-9. PubMed ID: 4154138 [No Abstract] [Full Text] [Related]
6. GABA metabolism and cerebral protein synthesis. Sandoval ME; Tapia R Brain Res; 1975 Oct; 96(2):279-86. PubMed ID: 1175012 [TBL] [Abstract][Full Text] [Related]
7. Studies on the regulation of GABA synthesis: substrate-promoted dissociation of pyridoxal-5'-phosphate from GAD. Miller LP; Martin DL; Mazumder A; Walters JR J Neurochem; 1978 Feb; 30(2):361-9. PubMed ID: 24086 [No Abstract] [Full Text] [Related]
8. Effects of acute and continuous pentobarbital administration on the gamma-aminobutyric acid system. Tzeng S; Ho IK Biochem Pharmacol; 1977 Apr; 26(8):699-704. PubMed ID: 856201 [No Abstract] [Full Text] [Related]
9. [Content of gamma-aminobutyric acid and glutamate decarboxylase activity in the rat brain during hyperbaric oxygenation and the protective action of urea]. Krichevskaia AA; Shugaleĭ VS; Shcherbina LA; Ermolenko GG Vopr Med Khim; 1974 May; 20(3):294-8. PubMed ID: 4836787 [No Abstract] [Full Text] [Related]
10. Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability. Tapia R; Sandoval ME; Contreras P J Neurochem; 1975 Jun; 24(6):1283-5. PubMed ID: 1127441 [No Abstract] [Full Text] [Related]
11. Glutamate-gamma-aminobutyric acid metabolism in cerebral cortex of rat in leptazol-induced convulsions. Bhaskar Rao A; Joseph PK; Ramakrishna Rao P; Rajan R; Ramakrishnan S Indian J Biochem Biophys; 1978 Aug; 15(4):308-10. PubMed ID: 738750 [No Abstract] [Full Text] [Related]
12. Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Ribak CE; Harris AB; Vaughn JE; Roberts E Science; 1979 Jul; 205(4402):211-4. PubMed ID: 109922 [TBL] [Abstract][Full Text] [Related]
13. Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat. Fonnum F; Grofavá I; Rinvik E Brain Res; 1978 Sep; 153(2):370-4. PubMed ID: 687988 [No Abstract] [Full Text] [Related]
14. Stoichiometry of GABA and CO2 formation in glutamate decarboxylase assays: alteration by an impurity L-U-[14C] glutamate. Morin AM; Wasterlain CG J Neurochem; 1978 Jul; 31(1):371-3. PubMed ID: 671034 [No Abstract] [Full Text] [Related]
15. The effect of the convulsant 3-mercaptopropionic acid on enzymes of the gamma-aminobutyrate system in the rat cerebral cortex. Rodríguez de Lores Arn ; Alberici de Canal M; Robiolo B; Mistrorigo de Pacheco M J Neurochem; 1973 Sep; 21(3):615-23. PubMed ID: 4147501 [No Abstract] [Full Text] [Related]
16. Accumulation of glutamic acid decarboxylase in the proximal parts of presumed GABA-ergic neurones after axotomy. Storm-Mathisen J Brain Res; 1975 Apr; 87(1):107-9. PubMed ID: 235348 [No Abstract] [Full Text] [Related]
17. Tectal deafferentation in the frog: selective loss of L-glutamate and gamma-aminobutyrate. Roberts PJ; Yates RA Neuroscience; 1976; 1(5):371-4. PubMed ID: 1087382 [No Abstract] [Full Text] [Related]
19. Postnatal alterations in effects of potassium on uptake and release of glutamate and GABA in rat brain cortex slices. Schousboe A; Lisy V; Hertz L J Neurochem; 1976 May; 26(5):1023-7. PubMed ID: 1271061 [No Abstract] [Full Text] [Related]
20. Differential effects of GABA analogues and zinc on glutamate decarboxylase, 4-aminobutyric-2-oxoglutaric acid transaminase and succinate semialdehyde dehydrogenase in rat brain tissue. de Boer T; Bruinvels J; Bonta IL J Neurochem; 1979 Aug; 33(2):597-601. PubMed ID: 469548 [No Abstract] [Full Text] [Related] [Next] [New Search]