BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 8942991)

  • 1. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds.
    Warshel A; Papazyan A
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13665-70. PubMed ID: 8942991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The energetics of hydrogen bonds in model systems: implications for enzymatic catalysis.
    Shan SO; Loh S; Herschlag D
    Science; 1996 Apr; 272(5258):97-101. PubMed ID: 8600542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment.
    Ash EL; Sudmeier JL; De Fabo EC; Bachovchin WW
    Science; 1997 Nov; 278(5340):1128-32. PubMed ID: 9353195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical comparison of approximation methods and models for equilibrium properties of low-barrier hydrogen bonds.
    MacDonald DA; Eppard GE; Halkides CJ; Messina M
    J Chem Inf Comput Sci; 2002; 42(6):1390-7. PubMed ID: 12444736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.
    Fuhrmann CN; Daugherty MD; Agard DA
    J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding nature's catalytic toolkit.
    Gutteridge A; Thornton JM
    Trends Biochem Sci; 2005 Nov; 30(11):622-9. PubMed ID: 16214343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad.
    Kumar P; Agarwal PK; Waddell MB; Mittag T; Serpersu EH; Cuneo MJ
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16260-16266. PubMed ID: 31515870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong, low-barrier hydrogen bonds may be available to enzymes.
    Graham JD; Buytendyk AM; Wang D; Bowen KH; Collins KD
    Biochemistry; 2014 Jan; 53(2):344-9. PubMed ID: 24359447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-barrier hydrogen bonds and enzymic catalysis.
    Cleland WW; Kreevoy MM
    Science; 1994 Jun; 264(5167):1887-90. PubMed ID: 8009219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Strong" hydrogen bonds in chemistry and biology.
    Perrin CL; Nielson JB
    Annu Rev Phys Chem; 1997; 48():511-44. PubMed ID: 9348662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding enzymic catalysis: the importance of short, strong hydrogen bonds.
    Gerlt JA; Kreevoy MM; Cleland W; Frey PA
    Chem Biol; 1997 Apr; 4(4):259-67. PubMed ID: 9195866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The low barrier hydrogen bond in enzymatic catalysis.
    Cleland WW; Frey PA; Gerlt JA
    J Biol Chem; 1998 Oct; 273(40):25529-32. PubMed ID: 9748211
    [No Abstract]   [Full Text] [Related]  

  • 18. Short strong hydrogen bonds: can they explain enzymic catalysis?
    Guthrie JP
    Chem Biol; 1996 Mar; 3(3):163-70. PubMed ID: 8807842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The charge density distribution in a model compound of the catalytic triad in serine proteases.
    Overgaard J; Schiøtt B; Larsen FK; Iversen BB
    Chemistry; 2001 Sep; 7(17):3756-67. PubMed ID: 11575777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.