BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8943085)

  • 1. Identification of proton-active residues in a higher plant light-harvesting complex.
    Walters RG; Ruban AV; Horton P
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14204-9. PubMed ID: 8943085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation.
    Walters RG; Ruban AV; Horton P
    Eur J Biochem; 1994 Dec; 226(3):1063-9. PubMed ID: 7813461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes. Inhibition of delta pH-dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide.
    Ruban AV; Walters RG; Horton P
    FEBS Lett; 1992 Sep; 309(2):175-9. PubMed ID: 1380472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29.
    Pesaresi P; Sandonà D; Giuffra E; Bassi R
    FEBS Lett; 1997 Feb; 402(2-3):151-6. PubMed ID: 9037185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II.
    Ruban AV; Pesaresi P; Wacker U; Irrgang KD; Bassi R; Horton P
    Biochemistry; 1998 Aug; 37(33):11586-91. PubMed ID: 9708995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular mechanism for qE-quenching.
    Crofts AR; Yerkes CT
    FEBS Lett; 1994 Oct; 352(3):265-70. PubMed ID: 7925984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.
    Yahyaoui W; Harnois J; Carpentier R
    FEBS Lett; 1998 Nov; 440(1-2):59-63. PubMed ID: 9862425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein.
    Li XP; Gilmore AM; Caffarri S; Bassi R; Golan T; Kramer D; Niyogi KK
    J Biol Chem; 2004 May; 279(22):22866-74. PubMed ID: 15033974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant.
    Dominici P; Caffarri S; Armenante F; Ceoldo S; Crimi M; Bassi R
    J Biol Chem; 2002 Jun; 277(25):22750-8. PubMed ID: 11934892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dicyclohexylcarbodiimide-binding proteins related to the short circuit of the proton-pumping activity of photosystem II. Identified as light-harvesting chlorophyll-a/b-binding proteins.
    Jahns P; Junge W
    Eur J Biochem; 1990 Nov; 193(3):731-6. PubMed ID: 2174365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin.
    Wentworth M; Ruban AV; Horton P
    FEBS Lett; 2000 Apr; 471(1):71-4. PubMed ID: 10760515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L; Grasses T; Graf M; Rech J; Jahns P
    Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation.
    Gilmore AM; Hazlett TL; Debrunner PG; Govindjee
    Photochem Photobiol; 1996 Sep; 64(3):552-63. PubMed ID: 8806231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein.
    Paulsen H; Finkenzeller B; Kühlein N
    Eur J Biochem; 1993 Aug; 215(3):809-16. PubMed ID: 8354287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH.
    Gilmore AM; Mohanty N; Yamamoto HY
    FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light-harvesting complexes.
    Wentworth M; Ruban AV; Horton P
    J Biol Chem; 2003 Jun; 278(24):21845-50. PubMed ID: 12670939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is PsbS the site of non-photochemical quenching in photosynthesis?
    Niyogi KK; Li XP; Rosenberg V; Jung HS
    J Exp Bot; 2005 Jan; 56(411):375-82. PubMed ID: 15611143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.