BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

994 related articles for article (PubMed ID: 8943190)

  • 1. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins.
    Gouaux E
    J Struct Biol; 1998; 121(2):110-22. PubMed ID: 9615434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins.
    Pédelacq JD; Maveyraud L; Prévost G; Baba-Moussa L; González A; Courcelle E; Shepard W; Monteil H; Samama JP; Mourey L
    Structure; 1999 Mar; 7(3):277-87. PubMed ID: 10368297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel.
    Cheley S; Malghani MS; Song L; Hobaugh M; Gouaux JE; Yang J; Bayley H
    Protein Eng; 1997 Dec; 10(12):1433-43. PubMed ID: 9543005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the alpha-hemolysin monomer from Staphylococcus aureus.
    Meesters C; Brack A; Hellmann N; Decker H
    Proteins; 2009 Apr; 75(1):118-26. PubMed ID: 18798569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages.
    Valeva A; Palmer M; Bhakdi S
    Biochemistry; 1997 Oct; 36(43):13298-304. PubMed ID: 9341221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin.
    Sugawara T; Yamashita D; Kato K; Peng Z; Ueda J; Kaneko J; Kamio Y; Tanaka Y; Yao M
    Toxicon; 2015 Dec; 108():226-31. PubMed ID: 26428390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of distant charge reversals within a robust beta-barrel protein pore.
    Mohammad MM; Movileanu L
    J Phys Chem B; 2010 Jul; 114(26):8750-9. PubMed ID: 20540583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family.
    Menestrina G; Serra MD; Prévost G
    Toxicon; 2001 Nov; 39(11):1661-72. PubMed ID: 11595629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin.
    Montoya M; Gouaux E
    Biochim Biophys Acta; 2003 Jan; 1609(1):19-27. PubMed ID: 12507754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions.
    Galdiero S; Gouaux E
    Protein Sci; 2004 Jun; 13(6):1503-11. PubMed ID: 15152085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
    Yamashita D; Sugawara T; Takeshita M; Kaneko J; Kamio Y; Tanaka I; Tanaka Y; Yao M
    Nat Commun; 2014 Sep; 5():4897. PubMed ID: 25263813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Methyl-2,4-pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure.
    Tanaka Y; Hirano N; Kaneko J; Kamio Y; Yao M; Tanaka I
    Protein Sci; 2011 Feb; 20(2):448-56. PubMed ID: 21280135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heptameric structures of two alpha-hemolysin mutants imaged with in situ atomic force microscopy.
    Malghani MS; Fang Y; Cheley S; Bayley H; Yang J
    Microsc Res Tech; 1999 Mar; 44(5):353-6. PubMed ID: 10090210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification.
    Walker B; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23065-71. PubMed ID: 7559447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcal pore-forming toxins.
    Prévost G; Mourey L; Colin DA; Menestrina G
    Curr Top Microbiol Immunol; 2001; 257():53-83. PubMed ID: 11417122
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin.
    Valeva A; Weisser A; Walker B; Kehoe M; Bayley H; Bhakdi S; Palmer M
    EMBO J; 1996 Apr; 15(8):1857-64. PubMed ID: 8617232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossing the hydrophobic barrier: insertion of membrane proteins.
    Engelman DM
    Science; 1996 Dec; 274(5294):1850-1. PubMed ID: 8984645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 50.