BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8943234)

  • 21. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse beta-cells.
    Schwanstecher C; Dickel C; Panten U
    Br J Pharmacol; 1994 Jan; 111(1):302-10. PubMed ID: 8012711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes.
    Jahangir A; Terzic A; Kurachi Y
    Cardiovasc Res; 1994 Jun; 28(6):831-5. PubMed ID: 7923287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP.
    D'hahan N; Moreau C; Prost AL; Jacquet H; Alekseev AE; Terzic A; Vivaudou M
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12162-7. PubMed ID: 10518593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes.
    Michailova A; Lorentz W; McCulloch A
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C542-57. PubMed ID: 17329404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of bound adenosine triphosphate from bound adenosine diphosphate by the purified coupling factor 1 of chloroplasts. Evidence for direct involvement of the coupling factor in this "adenylate kinase-like" reaction.
    Moudrianakis EN; Tiefert MA
    J Biol Chem; 1976 Dec; 251(24):7796-801. PubMed ID: 12178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage dependent inhibition of ATP sensitive potassium channels by flecainide in guinea pig ventricular cells.
    Wang DW; Sato T; Arita M
    Cardiovasc Res; 1995 Apr; 29(4):520-5. PubMed ID: 7796446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-sensitive potassium channels in neonatal and adult rabbit ventricular myocytes.
    Chen F; Wetzel GT; Friedman WF; Klitzner TS
    Pediatr Res; 1992 Aug; 32(2):230-5. PubMed ID: 1508616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle.
    Zeleznikar RJ; Heyman RA; Graeff RM; Walseth TF; Dawis SM; Butz EA; Goldberg ND
    J Biol Chem; 1990 Jan; 265(1):300-11. PubMed ID: 2152922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand-insensitive state of cardiac ATP-sensitive K+ channels. Basis for channel opening.
    Alekseev AE; Brady PA; Terzic A
    J Gen Physiol; 1998 Feb; 111(2):381-94. PubMed ID: 9450949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adenylate kinase activity in ejaculated bovine sperm flagella.
    Schoff PK; Cheetham J; Lardy HA
    J Biol Chem; 1989 Apr; 264(11):6086-91. PubMed ID: 2539368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ?
    Ovide-Bordeaux S; Ventura-Clapier R; Veksler V
    J Biol Chem; 2000 Nov; 275(47):37291-5. PubMed ID: 10970894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis.
    Weiss JN; Lamp ST
    J Gen Physiol; 1989 Nov; 94(5):911-35. PubMed ID: 2512370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-dependent fading of the activation of KATP channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes.
    Thuringer D; Cavero I; Coraboeuf E
    Br J Pharmacol; 1995 May; 115(1):117-27. PubMed ID: 7647966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies of the unitary properties of adenosine-5'-triphosphate-regulated potassium channels of frog skeletal muscle.
    Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1987 Jan; 382():213-36. PubMed ID: 2442362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different sulfonylurea and ATP sensitivity characterizes the juvenile and the adult form of KATP channel complex of rat skeletal muscle.
    Tricarico D; Petruzzi R; Conte Camerino DC
    Eur J Pharmacol; 1997 Mar; 321(3):369-78. PubMed ID: 9085050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N; Lamp ST; Weiss JN
    Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.