BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8943291)

  • 21. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels.
    Huang CL; Jan YN; Jan LY
    FEBS Lett; 1997 Apr; 405(3):291-8. PubMed ID: 9108307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2.
    Namba N; Inagaki N; Gonoi T; Seino Y; Seino S
    FEBS Lett; 1996 May; 386(2-3):211-4. PubMed ID: 8647284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and expression of a novel human brain inward rectifier potassium channel.
    Makhina EN; Kelly AJ; Lopatin AN; Mercer RW; Nichols CG
    J Biol Chem; 1994 Aug; 269(32):20468-74. PubMed ID: 8051145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel.
    Ivanina T; Rishal I; Varon D; Mullner C; Frohnwieser-Steinecke B; Schreibmayer W; Dessauer CW; Dascal N
    J Biol Chem; 2003 Aug; 278(31):29174-83. PubMed ID: 12743112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome.
    Preisig-Müller R; Schlichthörl G; Goerge T; Heinen S; Brüggemann A; Rajan S; Derst C; Veh RW; Daut J
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7774-9. PubMed ID: 12032359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
    Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D
    Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [K+] dependence of open-channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1).
    Lopatin AN; Nichols CG
    Biophys J; 1996 Aug; 71(2):682-94. PubMed ID: 8842207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei.
    Töpert C; Döring F; Wischmeyer E; Karschin C; Brockhaus J; Ballanyi K; Derst C; Karschin A
    J Neurosci; 1998 Jun; 18(11):4096-105. PubMed ID: 9592090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO(2) inhibits specific inward rectifier K(+) channels by decreases in intra- and extracellular pH.
    Zhu G; Liu C; Qu Z; Chanchevalap S; Xu H; Jiang C
    J Cell Physiol; 2000 Apr; 183(1):53-64. PubMed ID: 10699966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation.
    Zhang Q; Pacheco MA; Doupnik CA
    J Physiol; 2002 Dec; 545(2):355-73. PubMed ID: 12456817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor.
    Reale V; Chatwin HM; Evans PD
    Eur J Neurosci; 2004 Feb; 19(3):570-6. PubMed ID: 14984407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complexity of the regulation of Kir2.1 K+ channels.
    Ruppersberg JP; Fakler B
    Neuropharmacology; 1996; 35(7):887-93. PubMed ID: 8938719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel high-affinity inhibitor for inward-rectifier K+ channels.
    Jin W; Lu Z
    Biochemistry; 1998 Sep; 37(38):13291-9. PubMed ID: 9748337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic alpha1A receptors.
    Zitron E; Günth M; Scherer D; Kiesecker C; Kulzer M; Bloehs R; Scholz EP; Thomas D; Weidenhammer C; Kathöfer S; Bauer A; Katus HA; Karle CA
    J Mol Cell Cardiol; 2008 Jan; 44(1):84-94. PubMed ID: 18035370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants.
    Vivaudou M; Chan KW; Sui JL; Jan LY; Reuveny E; Logothetis DE
    J Biol Chem; 1997 Dec; 272(50):31553-60. PubMed ID: 9395492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.