These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 8943295)
1. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. Han M; Lin SW; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295 [TBL] [Abstract][Full Text] [Related]
2. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. Han M; Lin SW; Minkova M; Smith SO; Sakmar TP J Biol Chem; 1996 Dec; 271(50):32337-42. PubMed ID: 8943296 [TBL] [Abstract][Full Text] [Related]
3. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal. Han M; Groesbeek M; Smith SO; Sakmar TP Biochemistry; 1998 Jan; 37(2):538-45. PubMed ID: 9425074 [TBL] [Abstract][Full Text] [Related]
4. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Han M; Groesbeek M; Sakmar TP; Smith SO Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13442-7. PubMed ID: 9391044 [TBL] [Abstract][Full Text] [Related]
5. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Han M; Smith SO; Sakmar TP Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Zvyaga TA; Fahmy K; Siebert F; Sakmar TP Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533 [TBL] [Abstract][Full Text] [Related]
7. Partial agonist activity of 11-cis-retinal in rhodopsin mutants. Han M; Lou J; Nakanishi K; Sakmar TP; Smith SO J Biol Chem; 1997 Sep; 272(37):23081-5. PubMed ID: 9287308 [TBL] [Abstract][Full Text] [Related]
8. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition. Zvyaga TA; Min KC; Beck M; Sakmar TP J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840 [TBL] [Abstract][Full Text] [Related]
9. The roles of transmembrane domain helix-III during rhodopsin photoactivation. Ou WB; Yi T; Kim JM; Khorana HG PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764 [TBL] [Abstract][Full Text] [Related]
10. Light-stable rhodopsin. II. An opsin mutant (TRP-265----Phe) and a retinal analog with a nonisomerizable 11-cis configuration form a photostable chromophore. Ridge KD; Bhattacharya S; Nakayama TA; Khorana HG J Biol Chem; 1992 Apr; 267(10):6770-5. PubMed ID: 1532391 [TBL] [Abstract][Full Text] [Related]
11. Mutations at position 125 in transmembrane helix III of rhodopsin affect the structure and signalling of the receptor. Andrés A; Kosoy A; Garriga P; Manyosa J Eur J Biochem; 2001 Nov; 268(22):5696-704. PubMed ID: 11722553 [TBL] [Abstract][Full Text] [Related]
12. Critical role of electrostatic interactions of amino acids at the cytoplasmic region of helices 3 and 6 in rhodopsin conformational properties and activation. Ramon E; Cordomí A; Bosch L; Zernii EY; Senin II; Manyosa J; Philippov PP; Pérez JJ; Garriga P J Biol Chem; 2007 May; 282(19):14272-82. PubMed ID: 17322302 [TBL] [Abstract][Full Text] [Related]
13. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. Zvyaga TA; Fahmy K; Sakmar TP Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753 [TBL] [Abstract][Full Text] [Related]
15. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Reeves PJ; Hwa J; Khorana HG Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1927-31. PubMed ID: 10051571 [TBL] [Abstract][Full Text] [Related]
16. Spectral tuning in the human blue cone pigment. Fasick JI; Lee N; Oprian DD Biochemistry; 1999 Sep; 38(36):11593-6. PubMed ID: 10512613 [TBL] [Abstract][Full Text] [Related]
17. Properties of early photolysis intermediates of rhodopsin are affected by glycine 121 and phenylalanine 261. Jäger S; Han M; Lewis JW; Szundi I; Sakmar TP; Kliger DS Biochemistry; 1997 Sep; 36(39):11804-10. PubMed ID: 9305971 [TBL] [Abstract][Full Text] [Related]
18. Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase. Robinson PR; Buczyłko J; Ohguro H; Palczewski K Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5411-5. PubMed ID: 8202499 [TBL] [Abstract][Full Text] [Related]
19. Changing the location of the Schiff base counterion in rhodopsin. Zhukovsky EA; Robinson PR; Oprian DD Biochemistry; 1992 Oct; 31(42):10400-5. PubMed ID: 1329948 [TBL] [Abstract][Full Text] [Related]
20. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro. Sakamoto T; Khorana HG Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]