These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 8943326)
1. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Hall JP; Cherkasova V; Elion E; Gustin MC; Winter E Mol Cell Biol; 1996 Dec; 16(12):6715-23. PubMed ID: 8943326 [TBL] [Abstract][Full Text] [Related]
2. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. O'Rourke SM; Herskowitz I Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864 [TBL] [Abstract][Full Text] [Related]
3. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Zhan XL; Deschenes RJ; Guan KL Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718 [TBL] [Abstract][Full Text] [Related]
4. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene. Iwaki T; Tamai Y; Watanabe Y Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704 [TBL] [Abstract][Full Text] [Related]
5. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Patterson JC; Goupil LS; Thorner J Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163 [TBL] [Abstract][Full Text] [Related]
6. Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p. Farley FW; Satterberg B; Goldsmith EJ; Elion EA Genetics; 1999 Apr; 151(4):1425-44. PubMed ID: 10101167 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Wurgler-Murphy SM; Maeda T; Witten EA; Saito H Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256 [TBL] [Abstract][Full Text] [Related]
8. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Couve A; Hirsch JP Mol Cell Biol; 1996 Aug; 16(8):4478-85. PubMed ID: 8754848 [TBL] [Abstract][Full Text] [Related]
9. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Warmka J; Hanneman J; Lee J; Amin D; Ota I Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180 [TBL] [Abstract][Full Text] [Related]
10. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Cherkasova V; Lyons DM; Elion EA Genetics; 1999 Mar; 151(3):989-1004. PubMed ID: 10049917 [TBL] [Abstract][Full Text] [Related]
11. Yeast homolog of mammalian mitogen-activated protein kinase, FUS3/DAC2 kinase, is required both for cell fusion and for G1 arrest of the cell cycle and morphological changes by the cdc37 mutation. Fujimura HA J Cell Sci; 1994 Sep; 107 ( Pt 9)():2617-22. PubMed ID: 7844175 [TBL] [Abstract][Full Text] [Related]
12. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Bardwell L; Cook JG; Chang EC; Cairns BR; Thorner J Mol Cell Biol; 1996 Jul; 16(7):3637-50. PubMed ID: 8668180 [TBL] [Abstract][Full Text] [Related]
13. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. Schüller C; Brewster JL; Alexander MR; Gustin MC; Ruis H EMBO J; 1994 Sep; 13(18):4382-9. PubMed ID: 7523111 [TBL] [Abstract][Full Text] [Related]
14. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381 [TBL] [Abstract][Full Text] [Related]
15. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Brewster JL; Gustin MC Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729 [TBL] [Abstract][Full Text] [Related]
16. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Conte D; Barber E; Banerjee M; Garfinkel DJ; Curcio MJ Mol Cell Biol; 1998 May; 18(5):2502-13. PubMed ID: 9566871 [TBL] [Abstract][Full Text] [Related]
17. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. O'Rourke SM; Herskowitz I Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881 [TBL] [Abstract][Full Text] [Related]
18. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Proft M; Serrano R Mol Cell Biol; 1999 Jan; 19(1):537-46. PubMed ID: 9858577 [TBL] [Abstract][Full Text] [Related]
19. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Posas F; Saito H Science; 1997 Jun; 276(5319):1702-5. PubMed ID: 9180081 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Tedford K; Kim S; Sa D; Stevens K; Tyers M Curr Biol; 1997 Apr; 7(4):228-38. PubMed ID: 9094309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]