These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 8943356)

  • 1. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription.
    Erkine AM; Adams CC; Diken T; Gross DS
    Mol Cell Biol; 1996 Dec; 16(12):7004-17. PubMed ID: 8943356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter.
    Erkine AM; Adams CC; Gao M; Gross DS
    Nucleic Acids Res; 1995 May; 23(10):1822-9. PubMed ID: 7784189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements.
    Gross DS; English KE; Collins KW; Lee SW
    J Mol Biol; 1990 Dec; 216(3):611-31. PubMed ID: 2175361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes.
    Gross DS; Adams CC; English KE; Collins KW; Lee S
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):175-86. PubMed ID: 2256678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82.
    Szent-Gyorgyi C
    Mol Cell Biol; 1995 Dec; 15(12):6754-69. PubMed ID: 8524241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions.
    Lee MS; Garrard WT
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9166-70. PubMed ID: 1409619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs.
    Erkine AM; Szent-Gyorgyi C; Simmons SF; Gross DS
    Yeast; 1995 May; 11(6):573-80. PubMed ID: 7645348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element.
    McDaniel D; Caplan AJ; Lee MS; Adams CC; Fishel BR; Gross DS; Garrard WT
    Mol Cell Biol; 1989 Nov; 9(11):4789-98. PubMed ID: 2689867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin.
    Sekinger EA; Gross DS
    EMBO J; 1999 Dec; 18(24):7041-55. PubMed ID: 10601026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of a yeast HSP70 gene by heat shock factor and an upstream repression site-binding factor.
    Park HO; Craig EA
    Genes Dev; 1991 Jul; 5(7):1299-308. PubMed ID: 2065978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains.
    Taylor IC; Workman JL; Schuetz TJ; Kingston RE
    Genes Dev; 1991 Jul; 5(7):1285-98. PubMed ID: 2065977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
    Brandl CJ; Martens JA; Liaw PC; Furlanetto AM; Wobbe CR
    J Biol Chem; 1992 Oct; 267(29):20943-52. PubMed ID: 1400410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chromatin structure of the GAL1 promoter forms independently of Reb1p in Saccharomyces cerevisiae.
    Reagan MS; Majors JE
    Mol Gen Genet; 1998 Aug; 259(2):142-9. PubMed ID: 9747705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences.
    Chen J; Ding M; Pederson DS
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11909-13. PubMed ID: 7991556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum.
    Kohno K; Normington K; Sambrook J; Gething MJ; Mori K
    Mol Cell Biol; 1993 Feb; 13(2):877-90. PubMed ID: 8423809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.