BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8943357)

  • 1. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization.
    Orosz A; Wisniewski J; Wu C
    Mol Cell Biol; 1996 Dec; 16(12):7018-30. PubMed ID: 8943357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper.
    Rabindran SK; Haroun RI; Clos J; Wisniewski J; Wu C
    Science; 1993 Jan; 259(5092):230-4. PubMed ID: 8421783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.
    Wisniewski J; Orosz A; Allada R; Wu C
    Nucleic Acids Res; 1996 Jan; 24(2):367-74. PubMed ID: 8628664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition.
    Westwood JT; Wu C
    Mol Cell Biol; 1993 Jun; 13(6):3481-6. PubMed ID: 8497263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic mapping of heat shock transcription factor domains.
    Zhong M; Wu C
    Protein Sci; 1996 Dec; 5(12):2592-9. PubMed ID: 8976568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2.
    Sheldon LA; Kingston RE
    Genes Dev; 1993 Aug; 7(8):1549-58. PubMed ID: 8339932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean.
    Czarnecka-Verner E; Yuan CX; Fox PC; Gurley WB
    Plant Mol Biol; 1995 Oct; 29(1):37-51. PubMed ID: 7579166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
    Fu S; Rogowsky P; Nover L; Scanlon MJ
    Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity.
    Dai R; Frejtag W; He B; Zhang Y; Mivechi NF
    J Biol Chem; 2000 Jun; 275(24):18210-8. PubMed ID: 10747973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.
    Tai LJ; McFall SM; Huang K; Demeler B; Fox SG; Brubaker K; Radhakrishnan I; Morimoto RI
    J Biol Chem; 2002 Jan; 277(1):735-45. PubMed ID: 11679589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1995 Dec; 23(23):4799-804. PubMed ID: 8532521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins.
    Flick KE; Gonzalez L; Harrison CJ; Nelson HC
    J Biol Chem; 1994 Apr; 269(17):12475-81. PubMed ID: 8175654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock.
    Zhu Z; Mivechi NF
    J Cell Biochem; 1999 Apr; 73(1):56-69. PubMed ID: 10088724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences.
    Shopland LS; Lis JT
    Chromosoma; 1996 Sep; 105(3):158-71. PubMed ID: 8781184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.