BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8943357)

  • 21. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1.
    Marchler G; Wu C
    EMBO J; 2001 Feb; 20(3):499-509. PubMed ID: 11157756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity of Drosophila heat shock transcription factor to low pH.
    Zhong M; Kim SJ; Wu C
    J Biol Chem; 1999 Jan; 274(5):3135-40. PubMed ID: 9915852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-apoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock.
    Ropeleski MJ; Riehm J; Baer KA; Musch MW; Chang EB
    Gastroenterology; 2005 Jul; 129(1):170-84. PubMed ID: 16012946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trimerization of a yeast transcriptional activator via a coiled-coil motif.
    Sorger PK; Nelson HC
    Cell; 1989 Dec; 59(5):807-13. PubMed ID: 2686840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat shock transcription factors: structure and regulation.
    Wu C
    Annu Rev Cell Dev Biol; 1995; 11():441-69. PubMed ID: 8689565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit.
    Perisic O; Xiao H; Lis JT
    Cell; 1989 Dec; 59(5):797-806. PubMed ID: 2590940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibody-mediated activation of Drosophila heat shock factor in vitro.
    Zimarino V; Wilson S; Wu C
    Science; 1990 Aug; 249(4968):546-9. PubMed ID: 2200124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe.
    Gallo GJ; Prentice H; Kingston RE
    Mol Cell Biol; 1993 Feb; 13(2):749-61. PubMed ID: 8423799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway.
    Nakai A; Morimoto RI
    Mol Cell Biol; 1993 Apr; 13(4):1983-97. PubMed ID: 8455593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans.
    Schuetz TJ; Gallo GJ; Sheldon L; Tempst P; Kingston RE
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6911-5. PubMed ID: 1871106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the hexamer of human heat shock factor binding protein 1.
    Liu X; Xu L; Liu Y; Tong X; Zhu G; Zhang XC; Li X; Rao Z
    Proteins; 2009 Apr; 75(1):1-11. PubMed ID: 18767159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response.
    Shamovsky I; Gershon D
    Mech Ageing Dev; 2004; 125(10-11):767-75. PubMed ID: 15541771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding.
    Ota A; Enoki Y; Yamamoto N; Sawai M; Sakurai H
    Biochim Biophys Acta; 2013 Sep; 1829(9):930-6. PubMed ID: 23567048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intramolecular repression of mouse heat shock factor 1.
    Farkas T; Kutskova YA; Zimarino V
    Mol Cell Biol; 1998 Feb; 18(2):906-18. PubMed ID: 9447987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of the DNA-binding domain of Drosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation.
    Kim SJ; Tsukiyama T; Lewis MS; Wu C
    Protein Sci; 1994 Jul; 3(7):1040-51. PubMed ID: 7920249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.