These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8944161)
1. Nonlinear enzyme kinetics can lead to high metabolic flux control coefficients: implications for the evolution of dominance. Grossniklaus U; Madhusudhan MS; Nanjundiah V J Theor Biol; 1996 Oct; 182(3):299-302. PubMed ID: 8944161 [TBL] [Abstract][Full Text] [Related]
3. Control analysis of unbranched enzymatic chains in states of maximal activity. Heinrich R; Klipp E J Theor Biol; 1996 Oct; 182(3):243-52. PubMed ID: 8944155 [TBL] [Abstract][Full Text] [Related]
4. The flux-summation theorem and the 'evolution of dominance'. Agutter PS J Theor Biol; 2008 Oct; 254(4):821-5. PubMed ID: 18706429 [TBL] [Abstract][Full Text] [Related]
5. Why are most flux control coefficients so small? Mazat JP; Reder C; Letellier T J Theor Biol; 1996 Oct; 182(3):253-8. PubMed ID: 8944156 [TBL] [Abstract][Full Text] [Related]
6. Dominance is not inevitable. Cornish-Bowden A J Theor Biol; 1987 Apr; 125(3):333-8. PubMed ID: 3657214 [TBL] [Abstract][Full Text] [Related]
7. Metabolic control analysis of inhibitory feedback interaction: application to biotechnological processes. Torres NV J Theor Biol; 1996 Oct; 182(3):405-10. PubMed ID: 8944174 [TBL] [Abstract][Full Text] [Related]
8. Design of metabolic control for large flux changes. Thomas S; Fell DA J Theor Biol; 1996 Oct; 182(3):285-98. PubMed ID: 8944160 [TBL] [Abstract][Full Text] [Related]
9. On the sign pattern of metabolic control coefficients. Sen AK J Theor Biol; 1996 Oct; 182(3):269-75. PubMed ID: 8944158 [TBL] [Abstract][Full Text] [Related]
10. Evolution of dominance in metabolic pathways. Bagheri HC; Wagner GP Genetics; 2004 Nov; 168(3):1713-35. PubMed ID: 15579719 [TBL] [Abstract][Full Text] [Related]
11. Theory of steady-state control in complex metabolic networks. Bohnensack R Biomed Biochim Acta; 1985; 44(11-12):1567-78. PubMed ID: 4091833 [TBL] [Abstract][Full Text] [Related]
12. Design of large metabolic responses. Constraints and sensitivity analysis. Acerenza L J Theor Biol; 2000 Nov; 207(2):265-82. PubMed ID: 11034833 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent control of metabolic systems by external effectors. Szedlacsek SE; Aricescu AR; Havsteen BH J Theor Biol; 1996 Oct; 182(3):341-50. PubMed ID: 8944167 [TBL] [Abstract][Full Text] [Related]
14. Kinetic properties required for sustained or paradoxical control of metabolic fluxes under large changes in enzyme activities. Ortega F; Cascante M; Acerenza L J Theor Biol; 2008 Jun; 252(3):569-73. PubMed ID: 18045618 [TBL] [Abstract][Full Text] [Related]
15. Uncovering metabolic objectives pursued by changes of enzyme levels. Hoffmann S; Holzhütter HG Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632 [TBL] [Abstract][Full Text] [Related]
16. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. Kurata H; Zhao Q; Okuda R; Shimizu K BMC Syst Biol; 2007 Jul; 1():31. PubMed ID: 17640350 [TBL] [Abstract][Full Text] [Related]
17. How constrained is metabolic control? Acerenza L J Theor Biol; 1996 Oct; 182(3):277-83. PubMed ID: 8944159 [TBL] [Abstract][Full Text] [Related]
19. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Papp B; Pál C; Hurst LD Nature; 2004 Jun; 429(6992):661-4. PubMed ID: 15190353 [TBL] [Abstract][Full Text] [Related]
20. Control analysis of single enzyme sequences with abortive complexes and random substrate binding. Schulz AR; Südi J J Theor Biol; 1996 Oct; 182(3):397-403. PubMed ID: 8944173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]