BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8944295)

  • 1. Fetal sheep in utero hear through bone conduction.
    Gerhardt KJ; Huang X; Arrington KE; Meixner K; Abrams RM; Antonelli PJ
    Am J Otolaryngol; 1996; 17(6):374-9. PubMed ID: 8944295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear microphonics recorded from fetal and newborn sheep.
    Gerhardt KJ; Otto R; Abrams RM; Colle JJ; Burchfield DJ; Peters AJ
    Am J Otolaryngol; 1992; 13(4):226-33. PubMed ID: 1503196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway enabling external sounds to reach and excite the fetal inner ear.
    Sohmer H; Perez R; Sichel JY; Priner R; Freeman S
    Audiol Neurootol; 2001; 6(3):109-16. PubMed ID: 11474136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligibility of sentences recorded from the uterus of a pregnant ewe and from the fetal inner ear.
    Smith SL; Gerhardt KJ; Griffiths SK; Huang X; Abrams RM
    Audiol Neurootol; 2003; 8(6):347-53. PubMed ID: 14566105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional development of auditory sensitivity in the fetus and neonate.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 1995; 6(2):95-108. PubMed ID: 8573562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pathway for the transmission of external sounds into the fetal inner ear.
    Sohmer H; Freeman S
    J Basic Clin Physiol Pharmacol; 2001; 12(2 Suppl):91-9. PubMed ID: 11605684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of bone-conduction mobile phones: assessment of hearing mechanisms by measuring psychological characteristics and acoustical properties in the outer ear canal.
    Nakagawa S; Hotehama T; Ito K; Inagaki T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5427-5430. PubMed ID: 28269485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporary threshold shifts induced by low-pass and high-pass filtered noises in fetal sheep in utero.
    Huang X; Gerhardt KJ; Abrams RM; Antonelli PJ
    Hear Res; 1997 Nov; 113(1-2):173-81. PubMed ID: 9387996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of fetal exposure to external loud noise using a sheep model: quantification of in utero acoustic transmission across the human audio range.
    GĂ©lat P; David AL; Haqhenas SR; Henriques J; Thibaut de Maisieres A; White T; Jauniaux E
    Am J Obstet Gynecol; 2019 Oct; 221(4):343.e1-343.e11. PubMed ID: 31152712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fetal exposures to sound and vibroacoustic stimulation.
    Gerhardt KJ; Abrams RM
    J Perinatol; 2000 Dec; 20(8 Pt 2):S21-30. PubMed ID: 11190697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the middle ear reflex on sound transmission to the inner ear of rat.
    Pilz PK; Ostwald J; Kreiter A; Schnitzler HU
    Hear Res; 1997 Mar; 105(1-2):171-82. PubMed ID: 9083814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ear canal occlusion and static pressure difference on bone conduction thresholds: implications for mechanisms of bone conduction.
    Aazh H; Moore B; Peyvandi AA; Stenfelt S
    Int J Audiol; 2005 May; 44(5):302-6. PubMed ID: 16028793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cochlear window fixation on air- and bone-conduction thresholds.
    Nageris BI; Attias J; Shemesh R; Hod R; Preis M
    Otol Neurotol; 2012 Dec; 33(9):1679-84. PubMed ID: 23150097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of direct stimulation of the cochlea by vibrating the round window.
    Perez R; Adelman C; Chordekar S; de Jong MA; Sohmer H
    J Basic Clin Physiol Pharmacol; 2014 Sep; 25(3):273-6. PubMed ID: 25046313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.