These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8944665)

  • 61. The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function.
    Mussa BM; Verberne AJ
    Exp Physiol; 2013 Jan; 98(1):25-37. PubMed ID: 22660814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effects of lithium chloride on the activity of the afferent nerve fibers from the abdominal visceral organs in the rat.
    Niijima A; Yamamoto T
    Brain Res Bull; 1994; 35(2):141-5. PubMed ID: 7953770
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Suppression of afferent activity of the hepatic vagus nerve by anomers of D-glucose.
    Niijima A; Fukuda A; Taguchi T; Okuda J
    Am J Physiol; 1983 May; 244(5):R611-4. PubMed ID: 6846569
    [TBL] [Abstract][Full Text] [Related]  

  • 64. tGLP-1 action on the isolated hypothalamo-neurohypophysial system under glutamate receptor blockade.
    Bojanowska E; Stempniak B
    Brain Res Bull; 2002 Sep; 58(6):555-9. PubMed ID: 12372558
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vagal afferent activation induces salivation and swallowing-like events in anesthetized rats.
    Ueda H; Suga M; Yagi T; Kusumoto-Yoshida I; Kashiwadani H; Kuwaki T; Miyawaki S
    Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R964-R970. PubMed ID: 27707722
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of erythromycin on pancreatic polypeptide release: role of the vagal nerve.
    Witteman BJ; Edwards-Teunissen K; Hopman WP; Jansen JB
    Neuroendocrinology; 1994 Oct; 60(4):452-6. PubMed ID: 7824087
    [TBL] [Abstract][Full Text] [Related]  

  • 67. GLP-1 attenuates intestinal fat absorption and chylomicron production via vagal afferent nerves originating in the portal vein.
    Hoffman S; Alvares D; Adeli K
    Mol Metab; 2022 Nov; 65():101590. PubMed ID: 36067913
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Stimulation of truncated glucagon-like peptide-1 release from the isolated perfused canine ileum by glucose absorption.
    Sugiyama K; Manaka H; Kato T; Yamatani K; Tominaga M; Sasaki H
    Digestion; 1994; 55(1):24-8. PubMed ID: 8112493
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Glucagon acts in the liver to control spontaneous meal size in rats.
    Geary N; Le Sauter J; Noh U
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R116-22. PubMed ID: 8430871
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of endogenous sugar acids on the afferent discharge rate of the hepatic branch of the vagus nerve in the rat.
    Niijima A
    Physiol Behav; 1988; 44(4-5):661-4. PubMed ID: 2853388
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intracerebroventricular injection of methylatropine suppresses insulin response to oral glucose load in rats.
    Ohnuma H; Yamatani K; Igarashi M; Sugiyama K; Manaka H; Tominaga M; Sasaki H
    J Auton Nerv Syst; 1996 Feb; 57(1-2):43-8. PubMed ID: 8867084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Alterations in gastric acid secretion following hepatic portal injections of D-glucose and its anomers.
    Sakaguchi T
    J Auton Nerv Syst; 1982 May; 5(3):337-44. PubMed ID: 6749948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and L-lysine-deficient rats.
    Torii K; Niijima A
    Physiol Behav; 2001 Apr; 72(5):685-90. PubMed ID: 11337000
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Effects of Mutual Interaction of Orexin-A and Glucagon-Like Peptide-1 on Reflex Swallowing Induced by SLN Afferents in Rats.
    Kobashi M; Shimatani Y; Fujita M; Mitoh Y; Yoshida R; Matsuo R
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32580304
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Jejunal or portal vein infusions of lipids increase hepatic vagal afferent activity.
    Randich A; Spraggins DS; Cox JE; Meller ST; Kelm GR
    Neuroreport; 2001 Oct; 12(14):3101-5. PubMed ID: 11568645
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of non-glycated and glycated glucagon-like peptide-1(7-36) amide on glucose metabolism in isolated mouse abdominal muscle.
    O'Harte FP; Gray AM; Abdel-Wahab YH; Flatt PR
    Peptides; 1997; 18(9):1327-33. PubMed ID: 9392833
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of D-glucose anomers on afferent discharge inthe hepatic vagus nerve.
    Sakaguchi T; Iwanaga M
    Experientia; 1982 Apr; 38(4):475-6. PubMed ID: 7084411
    [No Abstract]   [Full Text] [Related]  

  • 78. Bombesin acts in the brain to decrease gastric vagal efferent discharge in rats.
    Yoshida-Yoneda E; Wei JY; Taché Y
    Peptides; 1993; 14(2):339-43. PubMed ID: 8483811
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective hepatic vagotomy blocks pancreatic glucagon's satiety effect.
    Geary N; Smith GP
    Physiol Behav; 1983 Sep; 31(3):391-4. PubMed ID: 6635010
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pancreatic vagal functional distribution in the secretion of insulin evoked by portal infusion of D-glucose.
    Yamazaki M; Sakaguchi T
    Brain Res; 1989 Apr; 484(1-2):357-60. PubMed ID: 2653566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.