BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8944686)

  • 1. ATP-dependent copper transporter, in the Golgi apparatus of rat hepatocytes, transports Cu(II) not Cu(I).
    Bingham MJ; Ong TJ; Ingledew WJ; McArdle HJ
    Am J Physiol; 1996 Nov; 271(5 Pt 1):G741-6. PubMed ID: 8944686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes.
    Dijkstra M; In 't Veld G; van den Berg GJ; Müller M; Kuipers F; Vonk RJ
    J Clin Invest; 1995 Jan; 95(1):412-6. PubMed ID: 7814642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an ATP-dependent copper transport system in endoplasmic reticulum vesicles isolated from rat liver.
    Bingham MJ; Burchell A; McArdle HJ
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):583-7. PubMed ID: 7738849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells.
    Tsivkovskii R; Eisses JF; Kaplan JH; Lutsenko S
    J Biol Chem; 2002 Jan; 277(2):976-83. PubMed ID: 11677246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells.
    Voskoboinik I; Brooks H; Smith S; Shen P; Camakaris J
    FEBS Lett; 1998 Sep; 435(2-3):178-82. PubMed ID: 9762903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The puzzle posed by COMMD1, a newly discovered protein binding Cu(II).
    Sarkar B; Roberts EA
    Metallomics; 2011 Jan; 3(1):20-7. PubMed ID: 21275100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Golgi membranes from liver express an ATPase with femtomolar copper affinity, inhibited by cAMP-dependent protein kinase.
    Hilário-Souza E; Valverde RH; Britto-Borges T; Vieyra A; Lowe J
    Int J Biochem Cell Biol; 2011 Mar; 43(3):358-62. PubMed ID: 21084060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-stimulated adenosine triphosphatase from rat liver. Isolation and kinetic characterization.
    Usta J; Barakeh H; Mahfouz H; Cortas N
    Ann N Y Acad Sci; 1997 Nov; 834():475-8. PubMed ID: 9405849
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of a heavy metal ion transporter in the lysosomal membrane.
    Havelaar AC; de Gast IL; Snijders S; Beerens CE; Mancini GM; Verheijen FW
    FEBS Lett; 1998 Oct; 436(2):223-7. PubMed ID: 9781683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP7B copper-regulated traffic and association with the tight junctions: copper excretion into the bile.
    Hernandez S; Tsuchiya Y; García-Ruiz JP; Lalioti V; Nielsen S; Cassio D; Sandoval IV
    Gastroenterology; 2008 Apr; 134(4):1215-23. PubMed ID: 18395099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular copper transport and metabolism.
    Harris ED
    Annu Rev Nutr; 2000; 20():291-310. PubMed ID: 10940336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu metabolism in the liver.
    McArdle HJ; Bingham MJ; Summer K; Ong TJ
    Adv Exp Med Biol; 1999; 448():29-37. PubMed ID: 10079813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, purification, and metal binding properties of the N-terminal domain from the wilson disease putative copper-transporting ATPase (ATP7B).
    DiDonato M; Narindrasorasak S; Forbes JR; Cox DW; Sarkar B
    J Biol Chem; 1997 Dec; 272(52):33279-82. PubMed ID: 9407118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of Legionella pneumophila Cu
    Placenti MA; Roman EA; González Flecha FL; González-Lebrero RM
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183822. PubMed ID: 34826402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of COMM-domain-containing 1 in stability and recruitment of the copper-transporting ATPase in a mouse hepatoma cell line.
    Miyayama T; Hiraoka D; Kawaji F; Nakamura E; Suzuki N; Ogra Y
    Biochem J; 2010 Jul; 429(1):53-61. PubMed ID: 20433422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an ecto-ATPase activity in Cryptococcus neoformans.
    Junior IC; Rodrigues ML; Alviano CS; Travassos LR; Meyer-Fernandes JR
    FEMS Yeast Res; 2005 Jul; 5(10):899-907. PubMed ID: 15951247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner.
    Tsivkovskii R; MacArthur BC; Lutsenko S
    J Biol Chem; 2001 Jan; 276(3):2234-42. PubMed ID: 11053407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn.
    Kusmierczyk AR; Martin J
    FEBS Lett; 2003 Jul; 547(1-3):201-4. PubMed ID: 12860414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine triphosphate-dependent copper transport in human liver.
    Dijkstra M; van den Berg GJ; Wolters H; In't Veld G; Slooff MJ; Heymans HS; Kuipers F; Vonk RJ
    J Hepatol; 1996 Jul; 25(1):37-42. PubMed ID: 8836899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.