BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8944758)

  • 21. 15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c553.
    Morelli X; Dolla A; Toci R; Guerlesquin F
    Eur J Biochem; 1999 Apr; 261(2):398-404. PubMed ID: 10215849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family.
    Matias PM; Coelho R; Pereira IA; Coelho AV; Thompson AW; Sieker LC; Gall JL; Carrondo MA
    Structure; 1999 Feb; 7(2):119-30. PubMed ID: 10368280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough).
    Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV
    Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774:primary sequence determination, crystallographic refinement at 1.8 and modelling studies of its interaction with the tetrahaem cytochrome c3.
    Matias PM; Saraiva LM; Soares CM; Coelho AV; LeGall J; Carrondo MA
    J Biol Inorg Chem; 1999 Aug; 4(4):478-94. PubMed ID: 10555582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction.
    Kazanskaya I; Lexa D; Bruschi M; Chottard G
    Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina: a putative redox model for flavocytochrome c3.
    Pessanha M; Louro RO; Correia IJ; Rothery EL; Pankhurst KL; Reid GA; Chapman SK; Turner DL; Salgueiro CA
    Biochem J; 2003 Mar; 370(Pt 2):489-95. PubMed ID: 12413396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family.
    Blackledge MJ; Guerlesquin F; Marion D
    Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional characterization of cytochrome c3 from D. desulfuricans ATCC 27774 by 1H-NMR.
    Louro RO; Pacheco I; Turner DL; LeGall J; Xavier AV
    FEBS Lett; 1996 Jul; 390(1):59-62. PubMed ID: 8706829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of hydrogen-bond networks in controlling reduction potentials in Desulfovibrio vulgaris (Hildenborough) cytochrome C3 probed by site-specific mutagenesis.
    Salgueiro CA; da Costa PN; Turner DL; Messias AC; van Dongen WM; Saraiva LM; Xavier AV
    Biochemistry; 2001 Aug; 40(32):9709-16. PubMed ID: 11583171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural studies on Desulfovibrio gigas cytochrome c3 by two-dimensional 1H-nuclear-magnetic-resonance spectroscopy.
    Piçarra-Pereira MA; Turner DL; LeGall J; Xavier AV
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):909-15. PubMed ID: 8397514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamic and kinetic characterization of trihaem cytochrome c3 from Desulfuromonas acetoxidans.
    Correia IJ; Paquete CM; Louro RO; Catarino T; Turner DL; Xavier AV
    Eur J Biochem; 2002 Nov; 269(22):5722-30. PubMed ID: 12423372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A detailed comparison of the refined structures of cytochrome c3 molecules from two strains in Desulfovibrio vulgaris: the relationship between the heme structures and their redox properties.
    Higuchi Y; Akutsu H; Yasuoka N
    Biochimie; 1994; 76(6):537-45. PubMed ID: 7880892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual redox characteristics and kinetic properties of the hemes in cytochromes c3: new methods of investigation.
    Bertrand P; Asso M; Mbarki O; Camensuli P; More C; Guigliarelli B
    Biochimie; 1994; 76(6):524-36. PubMed ID: 7880891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function relationship in type II cytochrome c(3) from Desulfovibrio africanus: a novel function in a familiar heme core.
    Pereira PM; Pacheco I; Turner DL; Louro RO
    J Biol Inorg Chem; 2002 Sep; 7(7-8):815-22. PubMed ID: 12203018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Full assignment of heme redox potentials of cytochrome c3 of D. vulgaris Miyazaki F by 1H-NMR.
    Park JS; Kano K; Niki K; Akutsu H
    FEBS Lett; 1991 Jul; 285(1):149-51. PubMed ID: 1648512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies.
    Palma PN; Moura I; LeGall J; Van Beeumen J; Wampler JE; Moura JJ
    Biochemistry; 1994 May; 33(21):6394-407. PubMed ID: 8204572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution.
    Matias PM; Frazão C; Morais J; Coll M; Carrondo MA
    J Mol Biol; 1993 Dec; 234(3):680-99. PubMed ID: 8254667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough.
    Sebban-Kreuzer C; Blackledge M; Dolla A; Marion D; Guerlesquin F
    Biochemistry; 1998 Jun; 37(23):8331-40. PubMed ID: 9622485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.