These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 8944955)
61. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump. Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li L J Med Eng Technol; 2002; 26(1):36-8. PubMed ID: 11924845 [TBL] [Abstract][Full Text] [Related]
62. Frank-starling control of a left ventricular assist device. Stevens MC; Gaddum NR; Pearcy M; Salamonsen RF; Timms DL; Mason DG; Fraser JF Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1335-8. PubMed ID: 22254563 [TBL] [Abstract][Full Text] [Related]
63. Antithrombogenic properties of a monopivot magnetic suspension centrifugal pump for circulatory assist. Yamane T; Maruyama O; Nishida M; Kosaka R; Chida T; Kawamura H; Kuwana K; Ishihara K; Sankai Y; Matsuzaki M; Shigeta O; Enomoto Y; Tsutsui T Artif Organs; 2008 Jun; 32(6):484-9. PubMed ID: 18422795 [TBL] [Abstract][Full Text] [Related]
64. Design and evaluation of a single-pivot supported centrifugal blood pump. Yoshino M; Uemura M; Takahashi K; Watanabe N; Hoshi H; Ohuchi K; Nakamura M; Fujita H; Sakamoto T; Takatani S Artif Organs; 2001 Sep; 25(9):683-7. PubMed ID: 11722342 [TBL] [Abstract][Full Text] [Related]
65. Estimation of left ventricular recovery level based on the motor current waveform analysis on circulatory support with centrifugal blood pump. Takahashi K; Uemura M; Watanabe N; Ohuchi K; Nakamura M; Fukui Y; Sakamoto T; Takatani S Artif Organs; 2001 Sep; 25(9):713-8. PubMed ID: 11722348 [TBL] [Abstract][Full Text] [Related]
67. An implantable centrifugal blood pump for long term circulatory support. Yamazaki K; Litwak P; Kormos RL; Mori T; Tagusari O; Antaki JF; Kameneva M; Watach M; Gordon L; Umezu M; Tomioka J; Koyanagi H; Griffith BP ASAIO J; 1997; 43(5):M686-91. PubMed ID: 9360134 [TBL] [Abstract][Full Text] [Related]
68. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device. Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631 [TBL] [Abstract][Full Text] [Related]
69. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations. Zhu S; Luo L; Yang B; Li X; Wang X Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):221-231. PubMed ID: 29072502 [TBL] [Abstract][Full Text] [Related]
70. Pulsatile driving of the helical flow pump. Ishii K; Hosoda K; Isoyama T; Saito I; Ariyoshi K; Inoue Y; Sato M; Hara S; Lee X; Wu SY; Ono T; Nakagawa H; Imachi K; Abe Y Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2724-7. PubMed ID: 24110290 [TBL] [Abstract][Full Text] [Related]
71. An approach to reducing hemolysis in an axial-flow blood pump. Anai H; Nakatani T; Wakisaka Y; Araki K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Eya K; Toda K ASAIO J; 1995; 41(3):M771-4. PubMed ID: 8573911 [TBL] [Abstract][Full Text] [Related]
72. The safety system for the rotary blood pump, combination of the valve and LVAD pulsatile mode: in vitro test. Tayama E; Ohashi Y; Niimi Y; Takami Y; Ohtsuka G; Nakata K; Benkowski R; Glueck JA; Nosé Y Artif Organs; 1998 Apr; 22(4):342-5. PubMed ID: 9555966 [TBL] [Abstract][Full Text] [Related]
73. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps. Shi Y; Korakianitis T Comput Biol Med; 2018 Feb; 93():127-138. PubMed ID: 29304409 [TBL] [Abstract][Full Text] [Related]
74. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation. Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836 [TBL] [Abstract][Full Text] [Related]
76. Dynamic motion analysis of impeller for the development of real-time flow rate estimations of a ventricular assist device. Shida S; Masuzawa T; Osa M Int J Artif Organs; 2022 Jan; 45(1):52-59. PubMed ID: 33356771 [TBL] [Abstract][Full Text] [Related]
77. In vivo validation of pulsatile flow and differential pressure estimation models in a left ventricular assist device. Zhang XT; Alomari AH; Savkin AV; Ayre PJ; Lim E; Salamonsen RF; Rosenfeldt FL; Lovell NH Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2517-20. PubMed ID: 21096435 [TBL] [Abstract][Full Text] [Related]
78. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests. Leme J; Fonseca J; Bock E; da Silva C; da Silva BU; Dos Santos AE; Dinkhuysen J; Andrade A; Biscegli JF Artif Organs; 2011 May; 35(5):443-7. PubMed ID: 21595709 [TBL] [Abstract][Full Text] [Related]
79. Motor current waveforms as an index for evaluation of native cardiac function during left ventricular support with a centrifugal blood pump. Kikugawa D Artif Organs; 2001 Sep; 25(9):703-8. PubMed ID: 11722346 [TBL] [Abstract][Full Text] [Related]
80. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump. Pai CN; Shinshi T; Shimokohbe A Proc Inst Mech Eng H; 2010; 224(7):913-24. PubMed ID: 20839658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]