BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8944962)

  • 21. Molecular mechanisms of Staphylococcus epidermidis biofilm formation.
    Mack D
    J Hosp Infect; 1999 Dec; 43 Suppl():S113-25. PubMed ID: 10658767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilized enzymes affect biofilm formation.
    Cordeiro AL; Hippius C; Werner C
    Biotechnol Lett; 2011 Sep; 33(9):1897-904. PubMed ID: 21618024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin.
    Ruckh TT; Floreani RA; Carroll DA; Mikhova K; Bryers JD; Popat KC
    J Mater Sci Mater Med; 2012 Jun; 23(6):1411-20. PubMed ID: 22407002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm formation on tracheostomy tubes.
    Jarrett WA; Ribes J; Manaligod JM
    Ear Nose Throat J; 2002 Sep; 81(9):659-61. PubMed ID: 12353444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived cellular debris is conserved across multiple genera.
    Patel NB; Hinojosa JA; Zhu M; Robertson DM
    Mol Vis; 2018; 24():94-104. PubMed ID: 29422767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene.
    Higashi JM; Wang IW; Shlaes DM; Anderson JM; Marchant RE
    J Biomed Mater Res; 1998 Mar; 39(3):341-50. PubMed ID: 9468041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis.
    Cerca N; Pier GB; Vilanova M; Oliveira R; Azeredo J
    Res Microbiol; 2005 May; 156(4):506-14. PubMed ID: 15862449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevalence of biofilm-producing Staphylococcus epidermidis in the healthy skin of individuals in Tamil Nadu, India.
    El Farran CA; Sekar A; Balakrishnan A; Shanmugam S; Arumugam P; Gopalswamy J
    Indian J Med Microbiol; 2013; 31(1):19-23. PubMed ID: 23508424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-Culture of S. epidermidis and Human Osteoblasts on Implant Surfaces: An Advanced In Vitro Model for Implant-Associated Infections.
    Zaatreh S; Wegner K; Strauß M; Pasold J; Mittelmeier W; Podbielski A; Kreikemeyer B; Bader R
    PLoS One; 2016; 11(3):e0151534. PubMed ID: 26982194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of selected properties of Staphylococcus epidermidis to biofilm formation on orthopedic implants].
    Nowicka J; Bartoszewicz M; Gościniak G
    Med Dosw Mikrobiol; 2012; 64(3):189-96. PubMed ID: 23285772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel antibiofilm technology for contact lens solutions.
    Farber BF; Hsieh HC; Donnenfeld ED; Perry HD; Epstein A; Wolff A
    Ophthalmology; 1995 May; 102(5):831-6. PubMed ID: 7777284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses.
    Henriques M; Sousa C; Lira M; Elisabete M; Oliveira R; Oliveira R; Azeredo J
    Optom Vis Sci; 2005 Jun; 82(6):446-50. PubMed ID: 15976580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Susceptibility of Vascular Implants to Colonization in vitro by Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Pseudomonas aeruginosa.
    Woźniak W; Kozińska A; Ciostek P; Sitkiewicz I
    Pol J Microbiol; 2017 Mar; 66(1):125-129. PubMed ID: 29359697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of bacterial adhesion to hydrogel contact lenses by albumin.
    Taylor RL; Willcox MD; Williams TJ; Verran J
    Optom Vis Sci; 1998 Jan; 75(1):23-9. PubMed ID: 9460783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of lipo-cyclic γ-AApeptides against biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa.
    Padhee S; Li Y; Cai J
    Bioorg Med Chem Lett; 2015 Jun; 25(12):2565-9. PubMed ID: 25977094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.
    Selan L; Palma S; Scoarughi GL; Papa R; Veeh R; Di Clemente D; Artini M
    Am J Ophthalmol; 2009 Jan; 147(1):134-9. PubMed ID: 18790470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface.
    Sakimura T; Kajiyama S; Adachi S; Chiba K; Yonekura A; Tomita M; Koseki H; Miyamoto T; Tsurumoto T; Osaki M
    Biomed Res Int; 2015; 2015():943056. PubMed ID: 25802873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas aeruginosa auto inducer3-oxo-C
    Singh PK; Yadav VK; Kalia M; Dohare S; Sharma D; Agarwal V
    Microb Pathog; 2017 Sep; 110():612-619. PubMed ID: 28804019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria, Staphylococcus epidermidis.
    Illingworth BL; Tweden K; Schroeder RF; Cameron JD
    J Heart Valve Dis; 1998 Sep; 7(5):524-30. PubMed ID: 9793851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo models to evaluate adhesion and biofilm formation by Staphylococcus epidermidis.
    Rupp ME; Fey PD
    Methods Enzymol; 2001; 336():206-15. PubMed ID: 11398400
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.