These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 8945649)
1. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649 [TBL] [Abstract][Full Text] [Related]
2. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774 [TBL] [Abstract][Full Text] [Related]
3. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue. Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021 [TBL] [Abstract][Full Text] [Related]
4. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images. Skedros JG; Mendenhall SD; Kiser CJ; Winet H Bone; 2009 Mar; 44(3):392-403. PubMed ID: 19049911 [TBL] [Abstract][Full Text] [Related]
5. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648 [TBL] [Abstract][Full Text] [Related]
6. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886 [TBL] [Abstract][Full Text] [Related]
7. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Skedros JG; Sorenson SM; Takano Y; Turner CH Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155 [TBL] [Abstract][Full Text] [Related]
8. Fatigue behavior of the equine third metacarpus: mechanical property analysis. Gibson VA; Stover SM; Martin RB; Gibeling JC; Willits NH; Gustafson MB; Griffin LV J Orthop Res; 1995 Nov; 13(6):861-8. PubMed ID: 8544022 [TBL] [Abstract][Full Text] [Related]
9. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Bromage TG; Goldman HM; McFarlin SC; Warshaw J; Boyde A; Riggs CM Anat Rec B New Anat; 2003 Sep; 274(1):157-68. PubMed ID: 12964206 [TBL] [Abstract][Full Text] [Related]
10. Osteonal effects on elastic modulus and fatigue life in equine bone. Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623 [TBL] [Abstract][Full Text] [Related]
11. Evidence of structural and material adaptation to specific strain features in cortical bone. Skedros JG; Mason MW; Nelson MC; Bloebaum RD Anat Rec; 1996 Sep; 246(1):47-63. PubMed ID: 8876823 [TBL] [Abstract][Full Text] [Related]
12. Collagen fiber orientation near a fractured dental implant after a 5-year loading period: case report. Traini T; De Paoli S; Caputi S; Iezzi G; Piattelli A Implant Dent; 2006 Mar; 15(1):70-6. PubMed ID: 16569964 [TBL] [Abstract][Full Text] [Related]
13. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. Martin RB; Boardman DL J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087 [TBL] [Abstract][Full Text] [Related]
14. Osteonal structure in the equine third metacarpus. Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV Bone; 1996 Aug; 19(2):165-71. PubMed ID: 8853861 [TBL] [Abstract][Full Text] [Related]
15. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material. Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638 [TBL] [Abstract][Full Text] [Related]
16. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Skedros JG; Mason MW; Bloebaum RD Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364 [TBL] [Abstract][Full Text] [Related]
17. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930 [TBL] [Abstract][Full Text] [Related]
18. Osteon interfacial strength and histomorphometry of equine cortical bone. Bigley RF; Griffin LV; Christensen L; Vandenbosch R J Biomech; 2006; 39(9):1629-40. PubMed ID: 16019009 [TBL] [Abstract][Full Text] [Related]
19. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291 [TBL] [Abstract][Full Text] [Related]
20. On the mechanical characterization of compact bone structure using the homogenization theory. Aoubiza B; Crolet JM; Meunier A J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]