These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 8945655)
1. Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction. Verdonschot N; Huiskes R J Biomech; 1996 Dec; 29(12):1569-75. PubMed ID: 8945655 [TBL] [Abstract][Full Text] [Related]
2. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Verdonschot N; Huiskes R Biomaterials; 1998 Oct; 19(19):1773-9. PubMed ID: 9856588 [TBL] [Abstract][Full Text] [Related]
3. Acrylic cement creeps but does not allow much subsidence of femoral stems. Verdonschot N; Huiskes R J Bone Joint Surg Br; 1997 Jul; 79(4):665-9. PubMed ID: 9250762 [TBL] [Abstract][Full Text] [Related]
4. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis. Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312 [TBL] [Abstract][Full Text] [Related]
5. Dynamic creep behavior of acrylic bone cement. Verdonschot N; Huiskes R J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542 [TBL] [Abstract][Full Text] [Related]
6. Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA). Norman TL; Shultz T; Noble G; Gruen TA; Blaha JD J Biomech; 2013 Mar; 46(5):949-55. PubMed ID: 23357700 [TBL] [Abstract][Full Text] [Related]
7. Effects of cement creep on stem subsidence and stresses in the cement mantle of a total hip replacement. Lu Z; McKellop H J Biomed Mater Res; 1997 Feb; 34(2):221-6. PubMed ID: 9029302 [TBL] [Abstract][Full Text] [Related]
8. Stem subsidence of polished and rough double-taper stems: in vitro mechanical effects on the cement-bone interface. Kaneuji A; Yamada K; Hirosaki K; Takano M; Matsumoto T Acta Orthop; 2009 Jun; 80(3):270-6. PubMed ID: 19421909 [TBL] [Abstract][Full Text] [Related]
9. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip. Norman TL; Saligrama VC; Hustosky KT; Gruen TA; Blaha JD J Biomech Eng; 1996 Aug; 118(3):399-404. PubMed ID: 8872263 [TBL] [Abstract][Full Text] [Related]
10. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis]. Massin P; Astoin E; Lavaste F Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057 [TBL] [Abstract][Full Text] [Related]
11. Creep behavior of hand-mixed Simplex P bone cement under cyclic tensile loading. Verdonschot N; Huiskes R J Appl Biomater; 1994; 5(3):235-43. PubMed ID: 10147450 [TBL] [Abstract][Full Text] [Related]
12. The load carrying and fatigue properties of the stem-cement interface with smooth and porous coated femoral components. Manley MT; Stern LS; Gurtowski J J Biomed Mater Res; 1985; 19(5):563-75. PubMed ID: 4066729 [TBL] [Abstract][Full Text] [Related]
13. A comparative FEA of the debonding process in different concepts of cemented hip implants. Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253 [TBL] [Abstract][Full Text] [Related]
14. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. Janssen D; Mann KA; Verdonschot N J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699 [TBL] [Abstract][Full Text] [Related]
15. Modelling debonded stem-cement interface for hip implants: effect of residual stresses. Nuño N; Amabili M Clin Biomech (Bristol); 2002 Jan; 17(1):41-8. PubMed ID: 11779645 [TBL] [Abstract][Full Text] [Related]
16. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding. Verdonschot N; Tanck E; Huiskes R J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679 [TBL] [Abstract][Full Text] [Related]
17. The skeletal response to matt and polished cemented femoral stems. Barker DS; Wang AW; Yeo MF; Nawana NS; Brumby SA; Pearcy MJ; Howie DW J Bone Joint Surg Br; 2000 Nov; 82(8):1182-8. PubMed ID: 11132284 [TBL] [Abstract][Full Text] [Related]
18. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study. Kim JK; Park JB Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants. Lennon AB; Prendergast PJ J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734 [TBL] [Abstract][Full Text] [Related]
20. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish. Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]