These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8945655)

  • 21. Mechanical effects of stem cement interface characteristics in total hip replacement.
    Verdonschot N; Huiskes R
    Clin Orthop Relat Res; 1996 Aug; (329):326-36. PubMed ID: 8769468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative finite element analysis of the debonding process in different concepts of cemented hip implants.
    Pérez MA; Palacios J
    Ann Biomed Eng; 2010 Jun; 38(6):2093-106. PubMed ID: 20232148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does increased bone-cement interface strength have negative consequences for bulk cement integrity? A finite element study.
    Pérez MA; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2009 Mar; 37(3):454-66. PubMed ID: 19085106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty.
    Oosterom R; van Ostayen RA; Antonelli V; Bersee HE
    Proc Inst Mech Eng H; 2005 Nov; 219(6):425-35. PubMed ID: 16312102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study.
    Waanders D; Janssen D; Miller MA; Mann KA; Verdonschot N
    J Biomech; 2009 Nov; 42(15):2513-9. PubMed ID: 19682690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model.
    Mann KA; Bartel DL; Wright TM; Burstein AH
    J Biomech; 1995 Sep; 28(9):1067-78. PubMed ID: 7559676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental?
    Takahashi E; Kaneuji A; Tsuda R; Numata Y; Ichiseki T; Fukui K; Kawahara N
    Bone Joint Res; 2017 May; 6(5):351-357. PubMed ID: 28566327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-clinical testing of hip prosthetic designs: a comparison of finite element calculations and laboratory tests.
    Verdonschot NJ; Huiskes R; Freeman MA
    Proc Inst Mech Eng H; 1993; 207(3):149-54. PubMed ID: 8117366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femoral component loosening in hip arthroplasty. Cadaver study of subsidence and hoop strain.
    Manley MT; Stern LS; Kotzar G; Stulberg BN
    Acta Orthop Scand; 1987 Oct; 58(5):485-90. PubMed ID: 3425274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical characteristics of the stem-cement interface.
    Mann KA; Bartel DL; Wright TM; Ingraffea AR
    J Orthop Res; 1991 Nov; 9(6):798-808. PubMed ID: 1919842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission.
    Sugiyama H; Whiteside LA; Kaiser AD
    Clin Orthop Relat Res; 1989 Dec; (249):122-8. PubMed ID: 2582663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical aspects of degree of cement bonding and implant wedge effect.
    Yoon YS; Oxland TR; Hodgson AJ; Duncan CP; Masri BA; Choi D
    Clin Biomech (Bristol); 2008 Nov; 23(9):1141-7. PubMed ID: 18584929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shrinkage stresses in bone cement.
    Orr JF; Dunne NJ; Quinn JC
    Biomaterials; 2003 Aug; 24(17):2933-40. PubMed ID: 12742733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic creep and mechanical characteristics of SmartSet GHV bone cement.
    Liu CZ; Green SM; Watkins ND; Baker D; McCaskie AW
    J Mater Sci Mater Med; 2005 Feb; 16(2):153-60. PubMed ID: 15744604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femoral prosthetic subsidence after low-friction arthroplasty.
    Loudon JR
    Clin Orthop Relat Res; 1986 Oct; (211):134-9. PubMed ID: 3769253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.