BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8945994)

  • 1. [Ca2+]i in rat afferent arteriole during constriction measured with confocal fluorescence microscopy.
    Yip KP; Marsh DJ
    Am J Physiol; 1996 Nov; 271(5 Pt 2):F1004-11. PubMed ID: 8945994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial Ca2+ in afferent arterioles during myogenic activity.
    Wagner AJ; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F170-8. PubMed ID: 8769836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Arg-Gly-Asp peptide stimulates constriction in rat afferent arteriole.
    Yip KP; Marsh DJ
    Am J Physiol; 1997 Nov; 273(5):F768-76. PubMed ID: 9374840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N omega-nitro-L-arginine constricts cerebral arterioles without increasing intracellular calcium levels.
    Dietrich HH; Kimura M; Dacey RG
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1681-6. PubMed ID: 8184948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraluminal pressure triggers myogenic response via activation of calcium spark and calcium-activated chloride channel in rat renal afferent arteriole.
    Yip KP; Balasubramanian L; Kan C; Wang L; Liu R; Ribeiro-Silva L; Sham JSK
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1592-F1600. PubMed ID: 30089032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased shear stress-released NO and decreased endothelial calcium in rat isolated perfused juxtamedullary nephrons.
    Pittner J; Wolgast M; Casellas D; Persson AE
    Kidney Int; 2005 Jan; 67(1):227-36. PubMed ID: 15610246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin II-receptor stimulation of cytosolic calcium concentration in cultured renal resistance arterioles.
    Zhu Z; Arendshorst WJ
    Am J Physiol; 1996 Dec; 271(6 Pt 2):F1239-47. PubMed ID: 8997399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II-induced changes in smooth muscle calcium in rat renal arterioles.
    Conger JD; Falk SA; Robinette JB
    J Am Soc Nephrol; 1993 May; 3(11):1792-803. PubMed ID: 8329674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles.
    Uhrenholt TR; Schjerning J; Vanhoutte PM; Jensen BL; Skøtt O
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1124-31. PubMed ID: 17148782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfusate composition influences nitric oxide homeostasis in rat juxtamedullary afferent arterioles.
    Pittner J; Wolgast M; Persson AE
    Acta Physiol Scand; 2003 Sep; 179(1):85-91. PubMed ID: 12940942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and spatiotemporal characterization of spontaneous Ca2+ sparks and global Ca2+ oscillations in retinal arteriolar smooth muscle cells.
    Curtis TM; Tumelty J; Dawicki J; Scholfield CN; McGeown JG
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4409-14. PubMed ID: 15557449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium measurement in isolated arterioles during myogenic and agonist stimulation.
    Meininger GA; Zawieja DC; Falcone JC; Hill MA; Davey JP
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H950-9. PubMed ID: 1887938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow modulates myogenic responses in isolated microperfused rabbit afferent arterioles via endothelium-derived nitric oxide.
    Juncos LA; Garvin J; Carretero OA; Ito S
    J Clin Invest; 1995 Jun; 95(6):2741-8. PubMed ID: 7769114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient increases in diameter and [Ca(2+)](i) are not obligatory for myogenic constriction.
    Hill MA; Zou H; Davis MJ; Potocnik SJ; Price S
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H345-52. PubMed ID: 10666063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME).
    Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced glycosylation end-products and NO-dependent vasodilation in renal afferent arterioles from diabetic rats.
    Moore LC; Thorup C; Ellinger A; Paccione J; Casellas D; Kaskel FJ
    Acta Physiol Scand; 2000 Jan; 168(1):101-6. PubMed ID: 10691786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of nitric oxide production and intracellular calcium in juxtamedullary afferent arteriolar endothelial cells.
    Pittner J; Liu R; Brown R; Wolgast M; Persson AE
    Acta Physiol Scand; 2003 Nov; 179(3):309-17. PubMed ID: 14616247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine phosphorylation following alterations in arteriolar intraluminal pressure and wall tension.
    Murphy TV; Spurrell BE; Hill MA
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1047-56. PubMed ID: 11514270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.
    Vogel PA; Yang X; Moss NG; Arendshorst WJ
    Hypertension; 2015 Aug; 66(2):374-81. PubMed ID: 26034201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.