BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8946063)

  • 1. Cholinergic neurons from different subdivisions of the basal forebrain lack connectional specificity for cerebral cortical target sites in vitro.
    Baratta J; Ha DH; Weiss JH; Yu J; Robertson RT
    Brain Res Dev Brain Res; 1996 Nov; 97(1):143-7. PubMed ID: 8946063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for target preferences by cholinergic axons originating from different subdivisions of the basal forebrain.
    Baratta J; Ha DH; Yu J; Robertson RT
    Brain Res Dev Brain Res; 2001 Dec; 132(1):15-21. PubMed ID: 11744103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic innervation of cerebral cortex in organotypic slice cultures: sustained basal forebrain and transient striatal cholinergic projections.
    Baratta J; Marienhagen JW; Ha D; Yu J; Robertson RT
    Neuroscience; 1996 Jun; 72(4):1117-32. PubMed ID: 8735234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial relationship between neurotensinergic axons and cholinergic neurons in the rat basal forebrain: a light microscopic study with three-dimensional reconstruction.
    Morin AJ; Tajani M; Jones BE; Beaudet A
    J Chem Neuroanat; 1996 Apr; 10(2):147-56. PubMed ID: 8783043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions.
    Leanza G; Nikkhah G; Nilsson OG; Wiley RG; Björklund A
    J Comp Neurol; 1996 Sep; 373(3):355-7. PubMed ID: 8889933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons.
    Gaykema RP; Zaborszky L
    J Comp Neurol; 1996 Oct; 374(4):555-77. PubMed ID: 8910735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats.
    De Lacalle S; Cooper JD; Svendsen CN; Dunnett SB; Sofroniew MV
    Neuroscience; 1996 Nov; 75(1):19-27. PubMed ID: 8923519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal treatment with 192 IgG-saporin produces long-term forebrain cholinergic deficits and reduces dendritic branching and spine density of neocortical pyramidal neurons.
    Robertson RT; Gallardo KA; Claytor KJ; Ha DH; Ku KH; Yu BP; Lauterborn JC; Wiley RG; Yu J; Gall CM; Leslie FM
    Cereb Cortex; 1998 Mar; 8(2):142-55. PubMed ID: 9542893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basal forebrain cholinergic cell attachment and neurite outgrowth on organotypic slice cultures of hippocampal formation.
    Tsai ES; Haraldson SJ; Baratta J; Lander AD; Yu J; Robertson RT
    Neuroscience; 2002; 115(3):815-27. PubMed ID: 12435420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redistribution of CB1 cannabinoid receptors during evolution of cholinergic basal forebrain territories and their cortical projection areas: a comparison between the gray mouse lemur (Microcebus murinus, primates) and rat.
    Harkany T; Dobszay MB; Cayetanot F; Härtig W; Siegemund T; Aujard F; Mackie K
    Neuroscience; 2005; 135(2):595-609. PubMed ID: 16129564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of AChE-positive neuronal projections from basal forebrain to cerebral cortex in organotypic tissue slice cultures.
    Distler PG; Robertson RT
    Brain Res Dev Brain Res; 1992 Jun; 67(2):181-96. PubMed ID: 1511514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.
    Saper CB
    J Comp Neurol; 1984 Jan; 222(3):313-42. PubMed ID: 6699210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of afferent projections to the dentate gyrus studied in organotypic co-cultures.
    Guthrie KM; Tran A; Baratta J; Yu J; Robertson RT
    Brain Res Dev Brain Res; 2005 Jun; 157(2):162-71. PubMed ID: 15882910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal development of the basal forebrain cholinergic projections to the medial prefrontal cortex in mice.
    Villalobos J; Rios O; Barbosa M
    Brain Res Dev Brain Res; 2000 Mar; 120(1):99-103. PubMed ID: 10727737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain.
    Robertson RT; Baratta J; Kageyama GH; Ha DH; Yu J
    Neuroscience; 1997 Oct; 80(3):741-52. PubMed ID: 9276490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septal cholinergic neurons suppress seizure development in hippocampal kindling in rats: comparison with noradrenergic neurons.
    Ferencz I; Leanza G; Nanobashvili A; Kokaia Z; Kokaia M; Lindvall O
    Neuroscience; 2001; 102(4):819-32. PubMed ID: 11182245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde degeneration and colchicine protection of basal forebrain cholinergic neurons following hippocampal injections of an immunotoxin against the P75 nerve growth factor receptor.
    Ohtake T; Heckers S; Wiley RG; Lappi DA; Mesulam MM; Geula C
    Neuroscience; 1997 May; 78(1):123-33. PubMed ID: 9135094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat.
    Hajszán T; Zaborszky L
    J Comp Neurol; 2002 Jul; 449(2):141-57. PubMed ID: 12115685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of acetylcholinesterase-positive thalamic and basal forebrain afferents to embryonic rat neocortex.
    De Carlos JA; Schlaggar BL; O'Leary DD
    Exp Brain Res; 1995; 104(3):385-401. PubMed ID: 7589291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impairment of basal forebrain cholinergic neurons associated with aging and long-term loss of ovarian function.
    Gibbs RB
    Exp Neurol; 1998 Jun; 151(2):289-302. PubMed ID: 9628764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.