These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 894612)

  • 41. Mechanism of action of insulin on acetylcholine-evoked amylase secretion in the mouse pancreas.
    Singh J
    J Physiol; 1985 Jan; 358():469-82. PubMed ID: 2580088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nicotinic and muscarinic activation of motoneurons in the crayfish locomotor network.
    Cattaert D; Araque A; Buño W; Clarac F
    J Neurophysiol; 1994 Oct; 72(4):1622-33. PubMed ID: 7823091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A transcellular route for Na-coupled Cl transport in secreting pancreatic acinar cells.
    O'Doherty J; Stark RJ
    Am J Physiol; 1983 Oct; 245(4):G499-503. PubMed ID: 6624917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane.
    Kusano K; Miledi R; Stinnakre J
    J Physiol; 1982 Jul; 328():143-70. PubMed ID: 7131311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three types of acetylcholine response in bivalve heart muscle cells.
    Elliott EJ
    J Physiol; 1980 Mar; 300():283-302. PubMed ID: 7381787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acetylcholine-induced Na+ influx in the mouse lacrimal gland acinar cells: demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements.
    Saito Y; Ozawa T; Nishiyama A
    J Membr Biol; 1987; 98(2):135-44. PubMed ID: 3669067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of chloride deficiency on the pancreatic B-cell response to acetylcholine.
    Hermans MP; Schmeer W; Gérard M; Henquin JC
    Biochim Biophys Acta; 1991 Apr; 1092(2):205-10. PubMed ID: 2018787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of different ions on resting polarization and on the mass receptor potential of carotid body chemosensors.
    Eyzaguirre C; Nishi K
    J Neurobiol; 1976 Sep; 7(5):417-34. PubMed ID: 978203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracellular Ca(2+) modulation of ATP-sensitive K(+) channel activity in acetylcholine-induced activation of rat pancreatic beta-cells.
    Nakano K; Suga S; Takeo T; Ogawa Y; Suda T; Kanno T; Wakui M
    Endocrinology; 2002 Feb; 143(2):569-76. PubMed ID: 11796512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Ca2+]i oscillations induced by high [K+]o in acetylcholine-stimulated rat submandibular acinar cells: regulation by depolarization, cAMP and pertussis toxin.
    Yoshida H; Marunaka Y; Nakahari T
    Exp Physiol; 2003 May; 88(3):369-79. PubMed ID: 12719761
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of gastrin and gastrin analogues on pancreatic acinar cell membrane potential and resistance.
    Iwatsuki N; Kato K; Nishiyama A
    Br J Pharmacol; 1977 May; 60(1):147-54. PubMed ID: 884386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ionic permeability changes during acetylcholine-induced responses of Aplysia ganglion cells.
    Sato M; Austin G; Yai H; Maruhashi J
    J Gen Physiol; 1968 Mar; 51(3):321-45. PubMed ID: 5648831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of insulin on acetylcholine-evoked amylase release and calcium mobilization in streptozotocin-induced diabetic rat pancreatic acinar cells.
    Patel R; Pariente JA; Martinez MA; Salido GM; Singh J
    Ann N Y Acad Sci; 2006 Nov; 1084():58-70. PubMed ID: 17151293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane potential measurement in parotid acinar cells.
    Pedersen GL; Petersen OH
    J Physiol; 1973 Oct; 234(1):217-27. PubMed ID: 4797341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reciprocal changes in intracellular and extracellular magnesium in rat pancreatic acinar cells in response to different secretagogues.
    González A; Pariente JA; Salido GM; Wisdom D; Singh J
    Magnes Res; 1995 Sep; 8(3):215-22. PubMed ID: 8845285
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increase in chloride permeability of snail neurons during high potassium-induced hyperpolarization.
    Yai H
    Jpn J Physiol; 1986; 36(6):1113-23. PubMed ID: 3599549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The relationship between acetylcholine-evoked Ca(2+)-dependent current and the Ca2+ concentrations in the cytosol and the lumen of the endoplasmic reticulum in pancreatic acinar cells.
    Park MK; Tepikin AV; Petersen OH
    Pflugers Arch; 1999 Nov; 438(6):760-5. PubMed ID: 10591062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Action potentials in the rat chromaffin cell and effects of acetylcholine.
    Brandt BL; Hagiwara S; Kidokoro Y; Miyazaki S
    J Physiol; 1976 Dec; 263(3):417-39. PubMed ID: 1018274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Secretion of fluid and amylase in the perfused rat pancreas.
    Petersen OH; Ueda N
    J Physiol; 1977 Jan; 264(3):819-35. PubMed ID: 191595
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular chloride activity and the effects of acetylcholine in snail neurones.
    Neild TO; Thomas RC
    J Physiol; 1974 Oct; 242(2):453-70. PubMed ID: 4455827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.