These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 8946319)
1. A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices. Tcheng TK; Gillette MU J Neurosci Methods; 1996 Nov; 69(2):163-9. PubMed ID: 8946319 [TBL] [Abstract][Full Text] [Related]
2. A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. Brown TM; Banks JR; Piggins HD J Neurosci Methods; 2006 Sep; 156(1-2):173-81. PubMed ID: 16581136 [TBL] [Abstract][Full Text] [Related]
3. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures. Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069 [TBL] [Abstract][Full Text] [Related]
4. Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. Thiébaud P; de Rooij NF; Koudelka-Hep M; Stoppini L IEEE Trans Biomed Eng; 1997 Nov; 44(11):1159-63. PubMed ID: 9353996 [TBL] [Abstract][Full Text] [Related]
5. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Stangl C; Fromherz P Eur J Neurosci; 2008 Feb; 27(4):958-64. PubMed ID: 18333966 [TBL] [Abstract][Full Text] [Related]
6. Slice XVIvo™: a novel electrophysiology system with the capability for 16 independent brain slice recordings. Graef JD; Wei H; Lippiello PM; Bencherif M; Fedorov N J Neurosci Methods; 2013 Jan; 212(2):228-33. PubMed ID: 23099344 [TBL] [Abstract][Full Text] [Related]
7. Multielectrode culture chamber: a device for long-term recording of bioelectric activities in vitro. Jánossy V; Tóth A; Bodocs L; Imrik P; Madarász E; Gyévai A Acta Biol Hung; 1990; 41(4):309-20. PubMed ID: 2131707 [TBL] [Abstract][Full Text] [Related]
8. A diencephalic slice preparation and chamber for studying neuronal thermosensitivity. Dean JB; Boulant JA J Neurosci Methods; 1988 Apr; 23(3):225-32. PubMed ID: 3367659 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre 'dident' microelectrodes. Pennington JM; Millar J; L Jones CP; Owesson CA; McLaughlin DP; Stamford JA J Neurosci Methods; 2004 Dec; 140(1-2):5-13. PubMed ID: 15589328 [TBL] [Abstract][Full Text] [Related]
10. Coupling of organotypic brain slice cultures to silicon-based arrays of electrodes. Jahnsen H; Kristensen BW; Thiébaud P; Noraberg J; Jakobsen B; Bove M; Martinoia S; Koudelka-Hep M; Grattarola M; Zimmer J Methods; 1999 Jun; 18(2):160-72. PubMed ID: 10356346 [TBL] [Abstract][Full Text] [Related]
11. A method for direct thalamic stimulation in fMRI studies using a glass-coated carbon fiber electrode. Shyu BC; Lin CY; Sun JJ; Sylantyev S; Chang C J Neurosci Methods; 2004 Aug; 137(1):123-31. PubMed ID: 15196834 [TBL] [Abstract][Full Text] [Related]
12. A floating metal microelectrode array for chronic implantation. Musallam S; Bak MJ; Troyk PR; Andersen RA J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683 [TBL] [Abstract][Full Text] [Related]