These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8946385)

  • 1. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process.
    Kirk K; Horner HA; Kirk J
    Mol Biochem Parasitol; 1996 Nov; 82(2):195-205. PubMed ID: 8946385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport processes of 2-deoxy-D-glucose in erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite.
    Izumo A; Tanabe K; Kato M; Doi S; Maekawa K; Takada S
    Parasitology; 1989 Jun; 98 Pt 3():371-9. PubMed ID: 2771446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers.
    Goodyer ID; Hayes DJ; Eisenthal R
    Mol Biochem Parasitol; 1997 Feb; 84(2):229-39. PubMed ID: 9084042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha- and beta-monosaccharide transport in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C151-61. PubMed ID: 18987250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purine nucleobase transport in the intraerythrocytic malaria parasite.
    Downie MJ; Saliba KJ; Bröer S; Howitt SM; Kirk K
    Int J Parasitol; 2008 Feb; 38(2):203-9. PubMed ID: 17765902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Deoxy-D-glucose uptake in cultured human muscle cells.
    Jacobs AE; Oosterhof A; Veerkamp JH
    Biochim Biophys Acta; 1990 Mar; 1051(3):230-6. PubMed ID: 2310773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum.
    Saliba KJ; Horner HA; Kirk K
    J Biol Chem; 1998 Apr; 273(17):10190-5. PubMed ID: 9553068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar transport in giant axons of Loligo.
    Baker PF; Carruthers A
    J Physiol; 1981 Jul; 316():481-502. PubMed ID: 7320878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 14C-desferrioxamine B: uptake into erythrocytes infected with Plasmodium falciparum.
    Fritsch G; Jung A
    Z Parasitenkd; 1986; 72(6):709-13. PubMed ID: 3541423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites.
    Atamna H; Pascarmona G; Ginsburg H
    Mol Biochem Parasitol; 1994 Sep; 67(1):79-89. PubMed ID: 7838186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexose transport in microvascular endothelial cells cultured from bovine retina.
    Betz AL; Bowman PD; Goldstein GW
    Exp Eye Res; 1983 Feb; 36(2):269-77. PubMed ID: 6337860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxy-D-glucose uptake by rat granular pneumocytes in primary culture.
    Kerr JS; Reicherter J; Fisher AB
    Am J Physiol; 1982 Jul; 243(1):C14-9. PubMed ID: 6283906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transport in Crithidia luciliae.
    Knodler LA; Schofield PJ; Edwards MR
    Mol Biochem Parasitol; 1992 Nov; 56(1):1-13. PubMed ID: 1474988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of diamide on nucleoside and glucose transport in Plasmodium falciparum and Babesia bovis infected erythrocytes.
    Gero AM; Wood AM; Hogue DL; Upston JM
    Mol Biochem Parasitol; 1991 Feb; 44(2):195-206. PubMed ID: 2052021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.